scholarly journals ICONE15-10372 ANALYSIS OF THE CONTROL OF THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR POWER PLANTS

Author(s):  
Haipeng Li ◽  
Xiaojin Huang ◽  
Liangju Zhang
Author(s):  
Gideon P. Greyvenstein

The objective of this paper is to model the steady-state and dynamic operation of a pebble-bed-type high temperature gas-cooled reactor power plant using a system computational fluid dynamics (CFD) approach. System CFD codes are 1D network codes with embedded 2D or even 3D discretized component models that provide a good balance between accuracy and speed. In the method presented in this paper, valves, orifices, compressors, and turbines are modeled as lumped or 0D components, whereas pipes and heat exchangers are modeled as 1D discretized components. The reactor is modeled as 2D discretized system. A point kinetics neutronic model will predict the heat release in the reactor. Firstly, the layout of the power conversion system is discussed together with the major plant parameters. This is followed by a high level description of the system CFD approach together with a description of the various component models. The code is used to model the steady-state operation of the system. The results are verified by comparing them with detailed cycle analysis calculations performed with another code. The model is then used to predict the net power delivered to the shaft over a wide range of speeds from zero to full speed. This information is used to specify parameters for a proportional-integral-derivative controller that senses the speed of the power turbine and adjusts the generator power during the startup of the plant. The generator initially acts as a motor that drives the shaft and then changes over to a generator load that approaches the design point value as the speed of the shaft approaches the design speed. A full startup simulation is done to demonstrate the behavior of the plant during startup. This example demonstrates the application of a system CFD code to test control strategies. A load rejection example is considered where the generator load is suddenly dropped to zero from a full load condition. A controller senses the speed of the low pressure compressor/low pressure turbine shaft and then adjusts the opening of a bypass valve to keep the speed of the shaft constant at 60rps. The example demonstrates how detailed information on critical parameters such as turbine and reactor inlet temperatures, maximum fuel temperature, and compressor surge margin can be obtained during operating transients. System CFD codes is a powerful design tool that is indispensable in the design of complex power systems such as gas-cooled nuclear power plants.


2018 ◽  
Vol 25 (s1) ◽  
pp. 204-210 ◽  
Author(s):  
Natalia Szewczuk-Krypa ◽  
Marta Drosińska-Komor ◽  
Jerzy Głuch ◽  
Łukasz Breńkacz

Abstract The article presents results of efficiency calculations for two 560 MW nuclear cycles with high-temperature gas-cooled reactor (HTGR). An assumption was made that systems of this type can be used in so-called marine nuclear power plants. The first analysed system is the nuclear steam power plant. For the steam cycle, the efficiency calculations were performed with the code DIAGAR, which is dedicated for analysing this type of systems. The other system is the power plant with gas turbine, in which the combustion chamber has been replaced with the HTGR. For this system, a number of calculations were also performed to assess its efficiency. Moreover, the article names factors in favour of floating nuclear power plants with HTGRs, which, due to passive safety systems, are exposed to much smaller risk of breakdown than other types of reactors which were in common use in the past. Along with safety aspects, it is also economic and social aspect which make the use of this type of systems advisable.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Arnold Gad-Briggs ◽  
Emmanuel Osigwe ◽  
Pericles Pilidis ◽  
Theoklis Nikolaidis ◽  
Suresh Sampath ◽  
...  

Abstract Numerous studies are on-going on to understand the performance of generation IV (Gen IV) nuclear power plants (NPPs). The objective is to determine optimum operating conditions for efficiency and economic reasons in line with the goals of Gen IV. For Gen IV concepts such as the gas-cooled fast reactors (GFRs) and very-high temperature reactors (VHTRs), the choice of cycle configuration is influenced by component choices, the component configuration and the choice of coolant. The purpose of this paper to present and review current cycles being considered—the simple cycle recuperated (SCR) and the intercooled cycle recuperated (ICR). For both cycles, helium is considered as the coolant in a closed Brayton gas turbine configuration. Comparisons are made for design point (DP) and off-design point (ODP) analyses to emphasize the pros and cons of each cycle. This paper also discusses potential future trends, include higher reactor core outlet temperatures (COT) in excess of 1000 °C and the simplified cycle configurations.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jinghan Zhang ◽  
Jun Zhao ◽  
Jiejuan Tong

Nuclear safety goal is the basic standard for limiting the operational risks of nuclear power plants. The statistics of societal risks are the basis for nuclear safety goals. Core damage frequency (CDF) and large early release frequency (LERF) are typical probabilistic safety goals that are used in the regulation of water-cooled reactors currently. In fact, Chinese current probabilistic safety goals refer to the Nuclear Regulatory Commission (NRC) and the International Atomic Energy Agency (IAEA), and they are not based on Chinese societal risks. And the CDF and LERF proposed for water reactor are not suitable for high-temperature gas-cooled reactors (HTGR), because the design of HTGR is very different from that of water reactor. And current nuclear safety goals are established for single reactor rather than unit or site. Therefore, in this paper, the development of the safety goal of NRC was investigated firstly; then, the societal risks in China were investigated in order to establish the correlation between the probabilistic safety goal of multimodule HTGR and Chinese societal risks. In the end, some other matters about multireactor site were discussed in detail.


1976 ◽  
Vol 41 (6) ◽  
pp. 1076-1078
Author(s):  
A. I. El'tsov ◽  
A. K. Zabavin ◽  
Yu. A. Kotel'nikov ◽  
A. A. Labut ◽  
E. P. Larin ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Jianghai Li ◽  
Jia Meng ◽  
Xiaojing Kang ◽  
Zhenhai Long ◽  
Xiaojin Huang

High-temperature gas-cooled reactors (HTGR) can incorporate wireless sensor network (WSN) technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs). This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA) and support vector machine (SVM) are developed.


Sign in / Sign up

Export Citation Format

Share Document