scholarly journals Comparison Analysis of Selected Nuclear Power Plants Supplied With Helium from High-Temperature Gas-Cooled Reactor

2018 ◽  
Vol 25 (s1) ◽  
pp. 204-210 ◽  
Author(s):  
Natalia Szewczuk-Krypa ◽  
Marta Drosińska-Komor ◽  
Jerzy Głuch ◽  
Łukasz Breńkacz

Abstract The article presents results of efficiency calculations for two 560 MW nuclear cycles with high-temperature gas-cooled reactor (HTGR). An assumption was made that systems of this type can be used in so-called marine nuclear power plants. The first analysed system is the nuclear steam power plant. For the steam cycle, the efficiency calculations were performed with the code DIAGAR, which is dedicated for analysing this type of systems. The other system is the power plant with gas turbine, in which the combustion chamber has been replaced with the HTGR. For this system, a number of calculations were also performed to assess its efficiency. Moreover, the article names factors in favour of floating nuclear power plants with HTGRs, which, due to passive safety systems, are exposed to much smaller risk of breakdown than other types of reactors which were in common use in the past. Along with safety aspects, it is also economic and social aspect which make the use of this type of systems advisable.

2019 ◽  
Vol 4 (6) ◽  
pp. 155-159
Author(s):  
A.H.M. Iftekharul Ferdous ◽  
T. H. M Sumon Rashid ◽  
Md Asaduzzaman Shobug ◽  
Tanveer Ahmed ◽  
Nitol Kumar Dutta

Bangladesh is a developing country and it’s increasing economy can be maintained by providing sufficient amount of electric power supply. Therefore government is initiating Rooppur nuclear power project is one of them which is needed to be sited beside a vast amount of water source, lowest populated area and away from the locality to reduce the damage caused by any nuclear accidents. In this thesis paper we have shown that, the the dangers of residing errors of Rooppur nuclear power plant and give a proposal to go for onshore nuclear power plant in Bangladesh with two proposed designs of passive safety systems PSS-I & PSS-II. These systems will give safety to the power plants in the case of plant blackout during accidents.


Author(s):  
Wei Shuhong ◽  
Zheng Hua

Heat removal from the core and spent fuel is one of the fundamental safety functions. Mobile equipment for heat removal from the core and spent fuel is required after Fukushima accident, but there are various constraints for modification of current operating nuclear power plants, such as layout, especially when new equipment are needed inside the containment. New reactor designs emphasize passive safety systems, but most passive safety systems rely on large pool and the heat removal duration depends on water volume. Super critical carbon dioxide brayton cycle can work as a heat engine by itself without external power supply or water supply, and supply surplus electricity due to the difference between expansion work and compression work. Also, super critical carbon dioxide brayton cycle is small, can be designed as a modular, mobile system and has little effect to system configuration or layout of current operating nuclear power plants. Super critical carbon dioxide brayton cycle is a good choice for self-propelling or passive heat removal for nuclear power plant modifications or new reactor designs without difficult modification of system configuration or layout. Super critical carbon dioxide Brayton cycle based heat removal system in nuclear power plants is designed and its technical feasibility is analyzed.


Author(s):  
Gideon P. Greyvenstein

The objective of this paper is to model the steady-state and dynamic operation of a pebble-bed-type high temperature gas-cooled reactor power plant using a system computational fluid dynamics (CFD) approach. System CFD codes are 1D network codes with embedded 2D or even 3D discretized component models that provide a good balance between accuracy and speed. In the method presented in this paper, valves, orifices, compressors, and turbines are modeled as lumped or 0D components, whereas pipes and heat exchangers are modeled as 1D discretized components. The reactor is modeled as 2D discretized system. A point kinetics neutronic model will predict the heat release in the reactor. Firstly, the layout of the power conversion system is discussed together with the major plant parameters. This is followed by a high level description of the system CFD approach together with a description of the various component models. The code is used to model the steady-state operation of the system. The results are verified by comparing them with detailed cycle analysis calculations performed with another code. The model is then used to predict the net power delivered to the shaft over a wide range of speeds from zero to full speed. This information is used to specify parameters for a proportional-integral-derivative controller that senses the speed of the power turbine and adjusts the generator power during the startup of the plant. The generator initially acts as a motor that drives the shaft and then changes over to a generator load that approaches the design point value as the speed of the shaft approaches the design speed. A full startup simulation is done to demonstrate the behavior of the plant during startup. This example demonstrates the application of a system CFD code to test control strategies. A load rejection example is considered where the generator load is suddenly dropped to zero from a full load condition. A controller senses the speed of the low pressure compressor/low pressure turbine shaft and then adjusts the opening of a bypass valve to keep the speed of the shaft constant at 60rps. The example demonstrates how detailed information on critical parameters such as turbine and reactor inlet temperatures, maximum fuel temperature, and compressor surge margin can be obtained during operating transients. System CFD codes is a powerful design tool that is indispensable in the design of complex power systems such as gas-cooled nuclear power plants.


Author(s):  
Shuichi Ohmori ◽  
Michitsugu Mori ◽  
Shoji Goto ◽  
Tadashi Narabayashi ◽  
Chikako Iwaki ◽  
...  

A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. We are developing technology for “Innovative Simplified Nuclear Power Plants” in order to further improve the economy and safety of nuclear power plants. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying “High-Efficiency SI”, which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feedwater heaters and Emergency Core Cooling Systems (ECCS) of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). The innovative-simplified nuclear power plant consists of a simplified feedwater heating system, a passive core injection system and a passive containment cooling system. This report describes the results of the endurance and performance tests of low-pressure SIs for feedwater heaters with Jet-deaerator and core injection system. A part of this report are fruits of research which is carried out by Tokyo Electric Power Company (TEPCO), Toshiba, and 7 Universities in Japan, funded from the Ministry of Economy, Trade and Industry (METI) of Japan as the national public research-funded program.


Author(s):  
Thomas G. Scarbrough

In a series of Commission papers, the U.S. Nuclear Regulatory Commission (NRC) described its policy for inservice testing (IST) programs to be developed and implemented at nuclear power plants licensed under 10 CFR Part 52. This paper discusses the expectations for IST programs based on those Commission policy papers as applied in the NRC staff review of combined license (COL) applications for new reactors. For example, the design and qualification of pumps, valves, and dynamic restraints through implementation of American Society of Mechanical Engineers (ASME) Standard QME-1-2007, “Qualification of Active Mechanical Equipment Used in Nuclear Power Plants,” as accepted in NRC Regulatory Guide (RG) 1.100 (Revision 3), “Seismic Qualification of Electrical and Active Mechanical Equipment and Functional Qualification of Active Mechanical Equipment for Nuclear Power Plants,” will enable IST activities to assess the operational readiness of those components to perform their intended functions. ASME has updated the Operation and Maintenance of Nuclear Power Plants (OM Code) to improve the IST provisions for pumps, valves, and dynamic restraints that are incorporated by reference in the NRC regulations with applicable conditions. In addition, lessons learned from performance experience and testing of motor-operated valves (MOVs) will be implemented as part of the IST programs together with application of those lessons learned to other power-operated valves (POVs). Licensee programs for the Regulatory Treatment of Non-Safety Systems (RTNSS) will be implemented for components in active nonsafety-related systems that are the first line of defense in new reactors that rely on passive systems to provide reactor core and containment cooling in the event of a plant transient. This paper also discusses the overlapping testing provisions specified in ASME Standard QME-1-2007; plant-specific inspections, tests, analyses, and acceptance criteria; the applicable ASME OM Code as incorporated by reference in the NRC regulations; specific license conditions; and Initial Test Programs as described in the final safety analysis report and applicable RGs. Paper published with permission.


Sign in / Sign up

Export Citation Format

Share Document