BASIC EXPERIMENTAL STUDY ON EFFECTIVENESS OF NUCLEAR WASTE LONG-TERM STORAGE CONTAINERS WITH PAR FOR REDUCING CONCENTRATION OF HYDROGEN GAS

Author(s):  
K. Ueta ◽  
G. Kawasaki ◽  
Y. Hiraki ◽  
G. Takase ◽  
Y. Matsumoto ◽  
...  
1990 ◽  
Vol 212 ◽  
Author(s):  
D. E. Grandstaff ◽  
V. J. Grassi ◽  
A. C. Lee ◽  
G. C. Ulmer

ABSTRACTSystematic differences in pH, cation/proton ion activity ratios, and redox have been observed between solutions produced in rock-water hydrothermal experiments with tuff, granite, and basalt. Stable pH values in tuff-water experiments may be as much as 1.5 pH units more acidic than basalt-water experiments at the same temperature and ionic strength. Redox (log fO2) values in 300°C tuff experiments are 4–7 orders of magnitude more oxidizing than basalt experiments and ca. 4 log units more oxidizing than the magnetite-hematite buffer. Such fluid differences could significantly affect the performance of a high-level nuclear waste repository and should be considered in repository design and siting.


2006 ◽  
Vol 118 (7) ◽  
pp. 1533-1537 ◽  
Author(s):  
Bekir Atik ◽  
Gürkan Öztürk ◽  
Ender Erdoğan ◽  
Önder Tan

Author(s):  
Fiquet Olivier ◽  
Boivinet Raynal ◽  
Trabuc Pierre

Organic radiolysis generates enough hydrogen gas to question the safety of radioactive fuel transportation and long-term storage. A safety analysis points out the absolute necessity to get rid of all organic substances in nuclear fuel long-term storage. In the past decades, R and D activities have been producing quantities of rod fuel samples embedded in polymer resins for characterization purposes. Until recently, resin has not been removed from samples and today large sample quantities have to be reprocessed. The “STAR” nuclear facility at CEA Cadarache in France devoted to used fuel stabilization and conditioning, recently decided to implement in the hot cell a particular process to achieve the safety requirements. In order to define a versatile process, efficient for any kind of polymer, thermal treatment has been chosen over a chemical or mechanical process. The definition of this particular thermal treatment must take into account; the hot cell environment, the nuclear safety rules and the behavior of resins. A prototypic furnace has been built for study purposes and thermal cycle validation. Today, the thermal cycle has been defined in two phases as follow: First phase: pyrolysis is used to transform resin into residues and gases. A post gas treatment will be added to the furnace for total gas oxidation. Second phase: Air thermal treatment will achieve the complete residue oxidation and guarantee a hydrogen free product. The final equipment will be available in 2009 for testing and validation cycles with a radioactive free simulator before it is to be implemented in the hot cell in 2010.


1984 ◽  
Vol 25 (4) ◽  
pp. 891
Author(s):  
Gary L. Downey ◽  
Steve H. Murdock ◽  
F. Larry Leistritz ◽  
Rita R. Hamm

2015 ◽  
Vol 467 ◽  
pp. 855-862 ◽  
Author(s):  
G. Ajeesh ◽  
Shantanu Bhowmik ◽  
Venugopal Sivakumar ◽  
Lalit Varshney ◽  
Virendra Kumar ◽  
...  

2006 ◽  
Vol 932 ◽  
Author(s):  
Damien Féron ◽  
Digby D. Macdonald

ABSTRACTThe corrosion resistance of container materials in underground repositories is an important issue for the safe disposal of High Level Nuclear Waste (HLNW). The reliable prediction of container degradation rate and engineering barrier integrity over extended periods, up to several thousands years or even several hundreds of thousands of years, represents one of the greatest scientific and technical challenges. The first and the second International Workshops on Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, which were held in 2001 (Cadarache) and 2004 (Nice), sought to compare the scientific and experimental approaches that are being developed in various organisations worldwide for predicting long term corrosion phenomena, including corrosion strategies for interim storage and geological disposal. The lessons learned during these Workshops, include the necessity of developing two approaches based on semi-empiricism and determinism in a complementary manner for effective prediction. The use of archaeological artefacts to demonstrate the feasibility of long term storage and to provide a database for testing and validating modelling work was also emphasized.


Author(s):  
Екатерина Сергеевна Машкина

В различных системах вблизи точек фазовых переходов наблюдаются неравновесные флуктуации по типу нелинейного броуновскго шума. Такие неравновесные процессы, как правило, являются предвестниками разрушения и деградации материалов. Наблюдение вблизи точки плавления Tm переходных явлений предплавления, аномальное поведение с температурой некоторых физических параметров, указывают на то, что по мере приближения к точке плавления структура и свойства твердого тела претерпевают изменения, как правило, нелинейно зависящие от скорости нагревания. Для характеристики состояния сложных динамических систем необходимо рассчитать показатель формы флуктуационного спектра, который несет информацию о происходящих в системе процессах ивзаимосвязях различных подсистем. По изменению спектральных характеристик флуктуационных процессов можно судить не только о состоянии системы, но и разрабатывать методики прогноза ее эволюции. Цель настоящей работы – параметризация тепловых флуктуаций в области предплавления ионных кристаллов KI и изучение зависимости спектральных параметров от кинетических режимов нагревания.Для определения спектральных характеристик тепловых флуктуаций в области предплавления KI в различных кинетических режимах использовался вейвлет-анализ. Вейвлетный анализ соединяет возможности, присущие классическому спектральному Фурье-анализу, с возможностями локального исследования различных флуктуационных и колебательных процессов в частотном и временном пространстве. Это позволяет выявлять особенности процессов на различных временах и масштабах эволюции системы. Вейвлет-преобразование колебательных процессов позволило получить информацию о динамике развития сложных систем в различных неравновесных условиях. Показано, что тепловые флуктуации в области предплавления KI представляют собой нелинейный броуновский шум с показателем самоподобия b ~ 2. С помощью показателя Херста определен тип флуктуационного процесса. Показано, что в динамических режимах нагревания (v = 5, 10 К/мин)флуктуационный процесс характеризуется колебательным характером эволюции по типу «устойчивое-неустойчивое» (свойство антиперсистентности), а квазистатических режимах (v = 1 К/мин) – поддерживается первоначальная тенденция эволюции системы (свойство персистентности).       ЛИТЕРАТУРА 1. Битюцкая Л. А., Селезнев Г. Д. Тепловой фликкер-шум в диссипативных процессах предплавления. ФТТ. 1999;41(9): 1679–1682. Режим доступа: https://journals.ioffe.ru/articles/viewPDF/355462. Геращенко О. В., Матвеев В. А., Плешанов Н. К., Байрамуков В. Ю. Электрическое сопротивление и 1/f-флуктуации в тонких пленках титана. ФТТ. 2014; 56(7): 1386–1390. Режим доступа:https://journals.ioffe.ru/articles/viewPDF/269403. Клочихин В. Л., Лакеев С. Г., Тимашев. С. Ф. Фликкер-шум в химической кинетике (микроско-пическая кинетика и флуктуации в стационарных химических процессах). ЖФХ. 1999; 73(2): 224–231.4. Павлов А. Н., Храмов А. Е., Короновский А. А., Ситникова Е. Ю., Макаров В. А., Овчинников А. А.Вейвлет-анализ в нейродинамике. УФН. 2012; 182(9): 905–939. DOI: https://doi.org/10.3367/UFNe.0182.201209a.09055. Копосов Г. Д., Бардюг Д. Ю. Анализ предплавления льда во влагосодержащих дисперсных средах. Письма ЖТФ. 2007;33(14): 80–86. Режим доступа: https://journals.ioffe.ru/articles/viewPDF/136056. Шибков А. А., Гасанов М. Ф., Золотов А. Е., Желтов М. А., Денисов А. А., Кольцов Р. Ю., Кочегаров С. С. Электрохимическая эмиссия при деформировании и разрушении алюминий-магниевогосплава в водной среде. ЖТФ. 2020;90(1): 85–93. DOI: https://doi.org/10.21883/JTF.2020.01.48666.151-197. Feychuk P., Bityutskaya L., Mashkina E., Shcherbak  L. Heat processes oscillations in the molten andsolid CdTe. J. Cryst. Growth. 2005;275(1–2): e1827–e1833. DOI: https://doi.org/10.1016/j.jcrysgro.2004.11.2568. Umeno Y., Shimada T., Kitamura T. Dislocation nucleation in a thin Cu fi lm from molecular dynamicssimulations: Instability activation by thermal fl uctuations. Phys. Rev. B. 2010;82(10): 104108/1–104108/11. DOI: https://doi.org/10.1103/PhysRevB.82.1041089. Уракаев Ф. Х., Массалимов И. А. Флуктуации энергии и эмиссионные явления в устье трещины.ФТТ. 2005;47(9): 1614–1618. Режим доступа: https://journals.ioffe.ru/articles/viewPDF/396610. Коверда В. П., Скоков В. Н. Масштабные преобразования 1/f флуктуаций при неравновесных фазовых переходах. ЖТФ. 2004;74(9): 4–8. Режим доступа: https://journals.ioffe.ru/articles/viewPDF/835711. Жигальский Г. П. Флуктуации и шумы в электронных твердотельных приборах. М.: Физматлит;2012. 512 с.12. Bityutskaya L. A., Mashkina E. S. System of kinetic parameters of the transition processes under melting of crystalline substances. Phase Transition. 2000;71: 317–330. DOI: https://doi.org/10.1080/0141159000820931213. Машкина Е. С. Влияние аниона на переходные процессы при плавлении ионных кристаллов.Конденсированные среды и межфазные границы. 2011;13(3): 309–314. Режим доступа: http://www.kcmf.vsu.ru/resources/t_13_3_2011_010.pdf14. Астафьева Н. М. Вейвлет-анализ: основы теории и примеры применения. УФН. 1996;166(11):1145–1170. DOI: https://doi.org/10.1070/PU1996v039n11ABEH00017715. Дремин И. М., Иванов О. В., Нечитайло В. А. Вейвлеты и их использование. УФН. 2001;171(5):465–501. DOI: https://doi.org/10.1070/PU-2001v044n05ABEH00091816. Arby P., Goncalves P., Vehel J. L. Scaling, fractals and wavelets. London: John Wiley & Sons; 2009.464 p.17. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в MATLAB. М.: ДМК Пресс; 2014. 628 с.18. Hurst H. E., Black R. P., Simaika Y. M. Long-term storage: An experimental study. London: Constable;1965. 145 p.19 Чен Б. Б., Имашев С. А. Оценка параметра Херста по наклону энергетического спектра наоснове вейвлет-преобразования. Вестник КРСУ. 2007;7(8): 65–75. Режим доступа: https://www.elibrary.ru/item.asp?id=1351989020. Зульпукаров М.-Г. М., Малинецкий Г. Г., Подлазов А. В. Пример решения обратной задачитеории бифуркации в динамической системе с шумом. Изв. вузов. ПНД. 2005;13(5–6): 3–23.


Sign in / Sign up

Export Citation Format

Share Document