209 Characteristics of Trial-and-Error Optimal Design (Influence of Constraint Condition on Design Process)

2004 ◽  
Vol 2004.79 (0) ◽  
pp. _2-17_-_2-18_
Author(s):  
Kazuyuki HANAHARA ◽  
Yukio TADA
2003 ◽  
Vol 2003.13 (0) ◽  
pp. 86-89
Author(s):  
Kazuyuki HANAHARA ◽  
Yukio TADA

Author(s):  
Timur Smetani ◽  
Elizaveta Gureva ◽  
Vyacheslav Andreev ◽  
Natalya Tarasova ◽  
Nikolai Andree

The article discusses methods for optimizing the design of the Neutron Converter research plant design with parameters that are most suitable for a particular consumer. 38 similar plant structures with different materials and sources were calculated, on the basis of which the most optimal options were found. As part of the interaction between OKBM Afrikantov JSC and the Nizhny Novgorod State Technical University named after R. E. Alekseev, the Neutron Converter research plant was designed and assembled. The universal neutron converter is a device for converting a stream of fast neutrons emitted by isotopic sources into a "standardized" value of flux density with known parameters in the volume of the central part of the product, which is the working part of the universal neutron converter. To supply neutron converters to other customer organizations (universities, research organizations and collective centers), it is necessary to take into account the experience of operating an existing facility, as well as rationalize the design process of each specific instance in accordance with the requirements of the customer.


2021 ◽  
Vol 11 (7) ◽  
pp. 3266
Author(s):  
Insub Choi ◽  
Dongwon Kim ◽  
Junhee Kim

Under high gravity loads, steel double-beam floor systems need to be reinforced by beam-end concrete panels to reduce the material quantity since rotational constraints from the concrete panel can decrease the moment demand by inducing a negative moment at the ends of the beams. However, the optimal design process for the material quantity of steel beams requires a time-consuming iterative analysis for the entire floor system while especially keeping in consideration the rotational constraints in composite connections between the concrete panel and steel beams. This study aimed to develop an optimal design method with the LM (Length-Moment) index for the steel double-beam floor system to minimize material quantity without the iterative design process. The LM index is an indicator that can select a minimum cross-section of the steel beams in consideration of the flexural strength by lateral-torsional buckling. To verify the proposed design method, the material quantities between the proposed and code-based design methods were compared at various gravity loads. The proposed design method successfully optimized the material quantity of the steel double-beam floor systems without the iterative analysis by simply choosing the LM index of the steel beams that can minimize objective function while satisfying the safety-related constraint conditions. In particular, under the high gravity loads, the proposed design method was superb at providing a quantity-optimized design option. Thus, the proposed optimal design method can be an alternative for designing the steel double-beam floor system.


Author(s):  
S. E. Di´az ◽  
R. Castro

Floating ring bearings are commonly used in automotive turbochargers for their low manufacturing costs. However, the strong non-linearity of this configuration prevents the use of traditional rotordynamic techniques to describe their behaivior, thus relegating its design process to a costly trial and error process. A numerical characterization of this non-linearity is hereby presented for a flexible rotor supported on two FRBs. Non-linear techniques such as Poincare´ and Bifurcation maps, along with traditional rotordynamic techniques, show ranges of periodic, quasiperiodic, and chaotic motion, being the most stable ones related to high unbalance and/or low speeds, though in some cases the periodicity of the motion is reestablished at higher speeds. In all cases chaos is reached through a period doubling route. Shaft flexibility is shown to retard the occurrence of chaos, while excitation of conical motion seems to favor it.


Author(s):  
Sophoria Westmoreland ◽  
Linda C. Schmidt

Some historically successful engineering inventions have been designed by trial and error as was the famous case of Thomas Edison’s light bulb. No contemporary design researcher would advocate a tedious, trial-and-error methodology as the basis for engineering practice. The 21st century engineer is expected to create innovative solutions to real world problems with limited resources and limited time. Successful engineering design methods are those that substitute trial-and-error with practice-based guidance (e.g., TRIZ), mathematical analysis (e.g., optimization), general problem-solving strategies (e.g., functional decomposition and synthesis), or good cognitive thinking strategies (e.g., Synectics). This research is placed in the last category, studying the cognitive processes that can be observed in recorded work of engineering designers. This study is the first step in research intended to go further into the designers mind and reveal new insights about the design process. This paper presents a cognitive coding scheme model to organize and categorize designer “thinking” as recorded in design documentation. The product of this research can be used to instruct curriculum on teaching the design process for students and professional engineers.


2021 ◽  
Vol 12 (23) ◽  
pp. 22-32
Author(s):  
Anton Kralj ◽  
◽  
Davor Skejić ◽  

Structural project is based on technical regulations, structural codes, construction conditions, and client requirements. Through the structural design process, some important decisions that can significantly affect the final result must be implemented. The most important factor for optimal design is the reduction in material and overall work costs. Selecting appropriate joint configurations that can reduce the overall weight and work on the structure is critical. To examine a significant number of possible configurations and their effect on structural behavior, the generative design method (GDM) is used. In this study, software is custom developed, and a relevant example of generative joint structural design is provided. The methodology for the optimal joint and structure design is described comprehensively. The final results show that the GDM is an effective methodology for application in the design of steel structures.


Sign in / Sign up

Export Citation Format

Share Document