Multiphysics Analyses of Two Dimensional Electric-thermoelastic Wave Propagation around Defects

2017 ◽  
Vol 2017.92 (0) ◽  
pp. M821
Author(s):  
Beishun ZHANG ◽  
Yoji SHIBUTANI ◽  
Ryuichi TARUMI
Author(s):  
S. K. Hosseini zad ◽  
A. Komeili ◽  
A. H. Akbarzadeh ◽  
M. R. Eslami

This study concentrates on the simulation of elastic and thermoelastic wave propagation in two-dimensional thermoelastic regions based on the classical and generalized coupled thermoelasticity. A finite element scheme is employed to obtain the field variables directly in the space and time domains. The FE method is based on the virtual displacement and the Galerkin technique, which is directly applied to the governing equations. The Newmark algorithm is used to solve the FE problem in time domain. Solving 2D coupled thermoelasticity equations leads to obtain the distribution of temperature, displacement and stresses through the domain. The problem is solved for two different type of boundary conditions (BCs), and the behavior of temperature, displacement and stress waves according to these BCs and based on the classical and generalized coupled thermoelasticity theories are shown and compared with each other. Several characteristics of the thermoelastic waves in two-dimensional domains are discussed according to this analysis.


1997 ◽  
Author(s):  
E. Longatte ◽  
P. Lafon ◽  
S. Candel ◽  
E. Longatte ◽  
P. Lafon ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3553
Author(s):  
Dengwang Wang ◽  
Yong Gao ◽  
Sheng Wang ◽  
Jie Wang ◽  
Haipeng Li

Carbon/Phenolic (C/P), a typical anisotropic material, is an important component of aerospace and often used to protect the thermodynamic effects of strong X-ray radiation. In this paper, we establish the anisotropic elastic-plastic constitutive model, which is embedded in the in-house code “RAMA” to simulate a two-dimensional thermal shock wave induced by X-ray. Then, we compare the numerical simulation results with the thermal shock wave stress generated by the same strong current electron beam via experiment to verify the correctness of the numerical simulation. Subsequently, we discuss and analyze the rules of thermal shock wave propagation in C/P material by further numerical simulation. The results reveal that the thermal shock wave represents different shapes and mechanisms by the radiation of 1 keV and 3 keV X-rays. The vaporization recoil phenomenon appears as a compression wave under 1 keV X-ray irradiation, and X-ray penetration is caused by thermal deformation under 3 keV X-ray irradiation. The thermal shock wave propagation exhibits two-dimensional characteristics, the energy deposition of 1 keV and 3 keV both decays exponentially, the energy deposition of 1 keV-peak soft X-ray is high, and the deposition depth is shallow, while the energy deposition of 3 keV-peak hard X-ray is low, and the deposition depth is deep. RAMA can successfully realize two-dimensional orthotropic elastoplastic constitutive relation, the corresponding program was designed and checked, and the calculation results for inspection are consistent with the theory. This study has great significance in the evaluation of anisotropic material protection under the radiation of intense X-rays.


2000 ◽  
Vol 62 (4) ◽  
pp. 5711-5720 ◽  
Author(s):  
A. A. Asatryan ◽  
P. A. Robinson ◽  
L. C. Botten ◽  
R. C. McPhedran ◽  
N. A. Nicorovici ◽  
...  

Geophysics ◽  
1972 ◽  
Vol 37 (3) ◽  
pp. 445-455 ◽  
Author(s):  
C. N. G. Dampney ◽  
B. B. Mohanty ◽  
G. F. West

Simple electronic circuitry and axially polarized ceramic transducers are employed to generate and detect elastic waves in a two‐dimensional analog model. The absence of reverberation and the basic simplicity. of construction underlie the advantages of this system. If the form of the fundamental wavelet in the model itself, as modified by the linear filtering effects of the remainder of the system, can be found, then calibration is achieved. This permits direct comparison of theoretical and experimental seismograms for a given model if its impulse response is known. A technique is developed for calibration and verified by comparing Lamb’s theoretical and experimental seismograms for elastic wave propagation over the edge of a half plate. This comparison also allows a critical examination of the basic assumptions inherent in a model seismic system.


Author(s):  
Harshal Y. Shahare ◽  
Rohan Rajput ◽  
Puneet Tandon

Abstract Stamping is one of the most used manufacturing processes, where real-time monitoring is quite difficult due to high speed of the mechanical press, which leads to deterioration of the accuracy of the products In the present work, a method is developed to model elastic waves propagation in solids to measure contact conditions between die and workpiece during stamping. A two-dimensional model is developed that reduces the wave propagation equations to two-dimensional equations. To simulate the wave propagation inside the die-workpiece model, the finite difference time domain (FDTD) method and modified Yee algorithm has been employed. The numerical stability of the wave propagation model is achieved through courant stability condition, i.e., Courant-Friedrichs-Lewy (CFL) number. Two cases, i.e., flat die-workpiece interface and inclined die-workpiece interface, are investigated in the present work. The elastic wave propagation is simulated with a two-dimension (2D) model of the die and workpiece using reflecting boundary conditions for different material properties. The experimental and simulation-based results of reflected and transmitted wave characteristics are compared for different materials in terms of reflected and transmitted wave height ratio and material properties such as acoustic impedance. It is found that the numerical simulation results are in good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document