Influence of Multiaxial Stress on Creep Damage of Mod.CrMoV Forging Steel

2021 ◽  
Vol 2021.27 (0) ◽  
pp. 10B03
Author(s):  
Yuu YOSHIOKA ◽  
Takashi OGATA
2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Marvin J. Cohn ◽  
Fatma G. Faham ◽  
Dipak Patel

A high-energy piping (HEP) asset integrity management program is important for the safety of plant personnel and reliability of the fossil plant generating unit. HEP weldment failures have resulted in serious injuries, fatalities, extensive damage of components, and significant lost generation. The main steam (MS) piping system is one of the most critical HEP systems. Creep damage assessment in MS piping systems should include the evaluation of multiaxial stresses associated with field conditions and significant anomalies, such as malfunctioning supports and significant displacement interferences. This paper presents empirical data illustrating that the most critical girth welds of MS piping systems have creep failures which can be successfully ranked by a multiaxial stress parameter, such as maximum principal stress. Inelastic (redistributed) stresses at the piping outside diameter (OD) surface were evaluated for the base metal of three MS piping systems at the piping analysis model nodes. The range of piping system stresses at the piping nodes for each piping system was determined for the redistributed creep stress condition. The range of piping stresses was subsequently included on a Larson–Miller parameter (LMP) plot for the grade P22 material, revealing the few critical (lead-the-fleet) girth welds selected for nondestructive examination (NDE). In the three MS piping systems, the stress ranges varied from 55% to 80%, with only a few locations at stresses beyond the 65 percentile of the range. By including evaluations of significant field anomalies and the redistributed multiaxial stresses on the outside surface, it was shown that there is a good correlation of the ranked redistributed multiaxial stresses to the observed creep damage. This process also revealed that a large number of MS piping girth welds have insufficient applied stresses to develop substantial creep damage within the expected unit lifetime (assuming no major fabrication defects). This study also provided a comparison of the results of a conventional American Society of Mechanical Engineers (ASME) B31.1 Code as-designed sustained stress analysis versus the redistributed maximum principal stresses in the as-found (current) condition for a complete set of MS piping system nodes. The evaluations of redistributed maximum principal stresses in the as-found condition were useful in selecting high priority ranked girth weldment creep damage locations. The evaluations of B31.1 Code as-designed sustained load stresses were not useful in selecting high priority creep damage locations.


2020 ◽  
Vol 43 (5) ◽  
pp. 907-918
Author(s):  
Xiao Wang ◽  
Xue Wang ◽  
Chuang Wang ◽  
Ya‐Lin Zhang ◽  
Qiao‐Sheng Huang

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Nayden Matev ◽  
Robert A. Ainsworth ◽  
Meini Su ◽  
Mark Stevens ◽  
Alan Jappy

Abstract Unless inelastic analysis is used, high temperature codes base creep relaxation on the start-of-dwell equivalent stress, which relaxes according to a uniaxial creep law. Elastic follow-up is also included. This approach only evaluates equivalent stress and creep strain rate and the multiaxial stress state is assumed to remain at its initial value as the stress relaxes. Codes suggest that the stress drop is limited to a fraction (typically 20%) of the initial equivalent stress to ensure this assumption does not introduce significant inaccuracies. This article provides a numerical examination of creep relaxation of a cruciform plate subjected to displacement-controlled biaxial loading, with the aim to provide clarification of any required constraint on stress drop. The initial biaxial stress ratio, the plate geometry and the power in a power–law creep model are varied, leading to variations in the elastic follow-up describing the creep relaxation. The biaxial stress ratio is generally found to change with relaxation and a multiaxial ductility approach is used to evaluate the associated creep damage accumulation. This is compared with the damage estimated assuming relaxation is controlled by the equivalent stress with no change in multiaxial stress state. For biaxial plane stress with one principal stress initially being compressive and one tensile, it is found that significant equivalent stress drops (about 40% of the initial stress) can be allowed without the simplified equivalent stress approach becoming inaccurate. More care is required for tensile–tensile stress biaxiality where multiaxial stress changes depend on the initial stress biaxiality and the degree of elastic follow-up. The results will be used to propose improved guidance for simplified inelastic calculations.


2013 ◽  
Vol 30 (1) ◽  
pp. 43-49 ◽  
Author(s):  
H. Shigeyama ◽  
R. Sugiura ◽  
T. Matsuzaki ◽  
A. T. Yokobori

Author(s):  
Nayden Matev ◽  
Robert A. Ainsworth ◽  
Meini Su ◽  
Mark Stevens ◽  
Alan Jappy

Abstract Unless detailed inelastic analysis is followed, high temperature codes base creep relaxation during a dwell period within a cycle on the start-of-dwell equivalent stress. The relaxation of the equivalent stress is then taken to be governed by a uniaxial creep law for the material being considered. Elastic follow-up is also included in such calculations. With this approach, only equivalent values of stress and creep strain rate are obtained and the stress multiaxiality is therefore assumed to remain at its initial value as the stress relaxes. The stress drop is limited to a small fraction (typically 20%) of the initial equivalent stress to ensure that this assumption does not lead to significant inaccuracy. This paper reports creep relaxation results for a pipe subjected to a combination of both primary and secondary stresses. The primary stress is generated by an internal pressure and an axial load, which enable different primary biaxial loading conditions to be generated. The secondary stress is through-wall bending in nature, produced by a through-wall temperature gradient, which influences the initial biaxial stress ratio. Several parameters are varied in order to produce relaxation behaviour in the pipe with an associated elastic follow-up. The starting biaxial stress ratio, the creep law power exponent and the amount of secondary stress result in varying degrees of elastic follow-up being present. The biaxial stress ratio is generally found to change as relaxation occurs and a multiaxial ductility approach is used to evaluate the associated effect on creep damage accumulation. This is compared with the creep damage estimated by assuming relaxation is simply controlled by the equivalent stress with no change in multiaxial stress state during relaxation. It is found that significant equivalent stress drops (up to about 40% of the initial value) can be allowed without the simplified equivalent stress approach being inaccurate. The results have been compared with a number of creep damage models to ensure that the conclusions are not sensitive to the detail of the damage model.


Sign in / Sign up

Export Citation Format

Share Document