Investigation of dynamic characteristic under three-axis transition on the planetary gear train based on the sun gear speed contour map.

Author(s):  
Dai NISHIDA ◽  
Toshiki HIROGAKI ◽  
Eiichi AOYAMA ◽  
Masao NAKAGAWA
2008 ◽  
Vol 32 (2) ◽  
pp. 251-266
Author(s):  
Shyue-Cheng Yang ◽  
Tsang-Lang Liang

This paper proposes a planetary gear train with ring-involute tooth profile. Inherent in a planetary gear train is the conjugate problem among the sun, the planet gears and the ring gear. The sun gear and the planet gear can be obtained by applying the envelope method to a one-parameter family of a conical tooth surface. The conical tooth rack cutter was presented in a previous paper [5]. The obtained planet gear then becomes the generating surface. The double envelope method can be used to obtain the envelope to the family of generating surfaces. Subsequently the profile of a ring gear of the planetary gear trains can be easily obtained, and using the generated planet gear and applying the gear theory, the ring gear is generated. To illustrate, the planetary gear train with a gear ratio of 24:10:7 is presented. Using rapid prototyping and manufacturing technology, a sun gear, four planet gears, and a ring gear are designed. The RP primitives provide an actual full-size physical model that can be analyzed and used for further development. Results from these mathematical models are applicable to the design of a planetary gear train.


2011 ◽  
Vol 86 ◽  
pp. 243-246
Author(s):  
Hai Feng Li ◽  
Bi Bo Fu ◽  
Dan Fu

In order to solve the problem of load sharing in planetary gear train, the design of planetary gear train was described briefly in this paper. The calculation model of type NGW planetary gear train was established. By analyzing the variety of factors, such as selection of bearing clearance, gear modification, using of flexible structure and the sun gear floating design technology, several ways to improve the load sharing of the planetary gear train techniques were obtained, and they were verified by experiments finally.


2011 ◽  
Vol 308-310 ◽  
pp. 307-310
Author(s):  
Xiao Mei You ◽  
Lei Meng ◽  
Xing Guo Ma ◽  
Bang Chun Wen

Based on the multi-body dynamics theory and visualization technology, a planetary gear train system is studied in RecurDyn. The multi-body dynamics model of the 2K-H planetary gear train system is built to do the visual analysis on dynamic characteristic of the planetary gear system severally in the ideal steady-state condition and the random-load condition, than the real-time dynamic contact stress and some other meaningful results of the key components are gained. Compared the related simulation results with that of the theoretical analysis, it is known that two kinds of results are consistent and the simulation analysis on the planetary gear train system is correct and accuracy. From the research above, the new idea and analytical tool are provided for the traditional, static, "redundancy" design method of the gear system, and also the effective technical mean is provided in conceptual design of complex mechanical products to predict the performance, then to reduce the "birth defects" in design stage and also an effective and efficient technical means for engineering applications is offered for optimal design and developing new product on gear train system.


Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


2019 ◽  
pp. 27-30
Author(s):  
Kiril Arnaudov ◽  
Dimitar Petkov Karaivanov

Sign in / Sign up

Export Citation Format

Share Document