A Numerical Prediction Method for the Combustion Process in a Homogeneous Charge Compression Ignition Engine

2003 ◽  
Vol 2003.3 (0) ◽  
pp. 133-134
Author(s):  
Katsuya SAIJYO ◽  
Takafumi KOJIMA ◽  
Kazuie NISHIWAKI ◽  
Yoshinobu YOSHIHARA
Author(s):  
Saliha Mohammed Belkebir ◽  
Benyoucef Khelidj ◽  
Miloud Tahar-Abbes

In order to investigate a viable approach to achieving high efficiencies and low nitrogen oxide (NOX) emissions, this paper presents the application of a homogeneous charge compression ignition (HCCI) engine and the partially premixed combustion (PPC) mode applied to a heavy diesel engine. The effect of carbon dioxide (CO2) fraction on combustion parameters was analyzed and discussed in detail. For this purpose, on the one hand, ANSYS CHEMKIN-Pro software was used to perform simulations of a closed homogeneous reactor under conditions relevant to HCCI engines, and on the other hand, ANSYS-Fluent software was used by adding a CO2 fraction varying from 20% to 58% to methane fuel to study 2D flow simulation by applying a PPC combustion mode to predict the distribution of various output parameters such as in-cylinder temperature, in-cylinder pressure and emissions. In comparison with the two presented models, it was found that the HCCI engine showed a lower NOX level than the PPC mode and this was due to the lower in-cylinder temperature in the HCCI engine.


2008 ◽  
Vol 9 (5) ◽  
pp. 361-397 ◽  
Author(s):  
M Shahbakhti ◽  
C R Koch

The cyclic variations of homogeneous charge compression ignition (HCCI) ignition timing is studied for a range of charge properties by varying the equivalence ratio, intake temperature, intake pressure, exhaust gas recirculation (EGR) rate, engine speed, and coolant temperature. Characterization of cyclic variations of ignition timing in HCCI at over 430 operating points on two single-cylinder engines for five different blends of primary reference fuel (PRF), (iso-octane and n-heptane) is performed. Three distinct patterns of cyclic variation for the start of combustion (SOC), combustion peak pressure ( Pmax), and indicated mean effective pressure (i.m.e.p.) are observed. These patterns are normal cyclic variations, periodic cyclic variations, and cyclic variations with weak/misfired ignitions. Results also show that the position of SOC plays an important role in cyclic variations of HCCI combustion with less variation observed when SOC occurs immediately after top dead centre (TDC). Higher levels of cyclic variations are observed in the main (second) stage of HCCI combustion compared with that of the first stage for the PRF fuels studied. The sensitivity of SOC to different charge properties varies. Cyclic variation of SOC increases with an increase in the EGR rate, but it decreases with an increase in equivalence ratio, intake temperature, and coolant temperature.


Sign in / Sign up

Export Citation Format

Share Document