scholarly journals Study of the Combustion Process of a Homogeneous Charge Compression Ignition (HCCI) Engine and a Partially Premixed Combustion (PPC) Mode of a Compression Ignition Engine Using Natural Gas as an Alternative Fuel

Author(s):  
Saliha Mohammed Belkebir ◽  
Benyoucef Khelidj ◽  
Miloud Tahar-Abbes

In order to investigate a viable approach to achieving high efficiencies and low nitrogen oxide (NOX) emissions, this paper presents the application of a homogeneous charge compression ignition (HCCI) engine and the partially premixed combustion (PPC) mode applied to a heavy diesel engine. The effect of carbon dioxide (CO2) fraction on combustion parameters was analyzed and discussed in detail. For this purpose, on the one hand, ANSYS CHEMKIN-Pro software was used to perform simulations of a closed homogeneous reactor under conditions relevant to HCCI engines, and on the other hand, ANSYS-Fluent software was used by adding a CO2 fraction varying from 20% to 58% to methane fuel to study 2D flow simulation by applying a PPC combustion mode to predict the distribution of various output parameters such as in-cylinder temperature, in-cylinder pressure and emissions. In comparison with the two presented models, it was found that the HCCI engine showed a lower NOX level than the PPC mode and this was due to the lower in-cylinder temperature in the HCCI engine.

2008 ◽  
Vol 9 (5) ◽  
pp. 399-408 ◽  
Author(s):  
T Shudo

A homogeneous charge compression ignition (HCCI) engine system fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG), both produced from methanol by onboard reformers using exhaust heat, has been proposed in previous research. Adjusting the proportions of DME and MRG with different ignition properties effectively controlled the ignition timing and load in HCCI combustion. The use of the single liquid fuel, methanol, also eliminates the inconvenience of carrying two fuels while maintaining the effective ignition control effect. Because reactions producing DME and MRG from methanol are endothermic, a part of the exhaust gas heat energy can be recovered during the fuel reforming. Methanol can be reformed into various compositions of hydrogen, carbon monoxide, and carbon dioxide. The present paper aims to establish the optimum MRG composition for the system in terms of ignition control and overall efficiency. The results show that an increased hydrogen fraction in MRG retards the onset of high-temperature oxidation and permits operation with higher equivalence ratios. However, the MRG composition affects the engine efficiency only a little, and the MRG produced by the thermal decomposition having the best waste-heat recovery capacity brings the highest overall thermal efficiency in the HCCI engine system fuelled with DME and MRG.


Author(s):  
Hu Tiegang ◽  
Liu Shenghua ◽  
Zhou Longbao ◽  
Zhu Chi

Dimethyl ether (DME) is a kind of fuel with high cetane number and low evaporating temperature, which is suitable for a homogeneous charge compression ignition (HCCI) engine. The combustion and emission characteristics of an HCCI engine fuelled with DME were investigated on a modified single-cylinder engine. The experimental results indicate that the HCCI engine combustion is a two-stage heat release process. The engine load or air-fuel ratio has significant effects on the maximum cylinder pressure and its position, the shape of the pressure rise rate and the heat release rate. The engine speed has little effect. A DME HCCI engine is smoke free, with zero NOx and low hydrocarbon and CO emissions under the operating conditions of 0.25–0.30 MPa brake mean effective pressure.


Author(s):  
Shouvik Dev ◽  
Tongyang Gao ◽  
Xiao Yu ◽  
Mark Ives ◽  
Ming Zheng

Homogeneous charge compression ignition (HCCI) has been considered as an ideal combustion mode for compression ignition (CI) engines due to its superb thermal efficiency and low emissions of nitrogen oxides (NOx) and particulate matter. However, a challenge that limits practical applications of HCCI is the lack of control over the combustion rate. Fuel stratification and partially premixed combustion (PPC) have considerably improved the control over the heat release profile with modulations of the ratio between premixed fuel and directly injected fuel, as well as injection timing for ignition initiation. It leverages the advantages of both conventional direct injection compression ignition and HCCI. In this study, neat n-butanol is employed to generate the fuel stratification and PPC in a single cylinder CI engine. A fuel such as n-butanol can provide additional benefits of even lower emissions and can potentially lead to a reduced carbon footprint and improved energy security if produced appropriately from biomass sources. Intake port fuel injection (PFI) of neat n-butanol is used for the delivery of the premixed fuel, while the direct injection (DI) of neat n-butanol is applied to generate the fuel stratification. Effects of PFI-DI fuel ratio, DI timing, and intake pressure on the combustion are studied in detail. Different conditions are identified at which clean and efficient combustion can be achieved at a baseline load of 6 bar IMEP. An extended load of 14 bar IMEP is demonstrated using stratified combustion with combustion phasing control.


Sign in / Sign up

Export Citation Format

Share Document