Semi-active Vibration Control with non-linear model of MR Damper

2004 ◽  
Vol 2004.6 (0) ◽  
pp. 261-262
Author(s):  
Takashi TAKAHSI ◽  
Shinya Soma ◽  
Toru WATANABE ◽  
Kazuto SETO
2017 ◽  
Vol 28 (15) ◽  
pp. 2074-2081 ◽  
Author(s):  
Chunyou Zhang ◽  
Lihua Wang ◽  
Xiaoqiang Wu ◽  
Weijin Gao

Due to widespread applications of a large number of flexible structures, to obtain the best dynamic control performance of a system, optimal locations of the actuators and sensors are necessary to be determined. This article proposes a novel optimal criterion for the actuators or sensors ensuring good controllability or observability of a structure, and also considering the remaining modes to control the spillover effect. Based on the proposed optimization criteria, a non-linear integer programming genetic algorithm is employed to achieve the optimal configurations. Active vibration control is investigated for a cantilever plate with the actuators in optimal positions to suppress the specified modes utilizing linear quadratic regulator controller. Several simulation results validate the efficiency and feasibility of the proposed optimal criteria.


2010 ◽  
Vol 37-38 ◽  
pp. 439-443 ◽  
Author(s):  
Zhen Ning Hou ◽  
Zhi Min Feng ◽  
Hai Gang Hu ◽  
Guang Bin Wu

MR dampers are new kind of the most promising devices for structural vibration control. In this paper, an overview of the structure and working principle of shear-valve mode magnetorheological (MR) damper is given. An experimental study was carried out to test the performance characteristics of a shear-valve mode MR damper, its dynamic testing was performed on a Material Testing System (MTS) under sinusoidal and triangle excitation. Based on experimental data, the dynamic characteristics, energy dissipation and dynamic response time were analyzed. The present work lays down a foundation for MR damper application in the semi-active vibration control system.


Author(s):  
Chunyan Ji

Jacket platforms are inevitably undergoing the environmental loads such as wind, waves, current, ice and earthquake etc., which will induce continuous vibration of the platforms. The vibration, on one hand, will cause fatigue damage, decreasing the platform’s reliability; on the other hand, the excessive vibration can’t satisfy the basic psychological requirements of the personnel. In order to reduce the excessive vibration of jacket platforms effectively, many control strategy and control equipments are proposed and studied. In the present study, a model experiment is designed to investigate the effectiveness of semi-active vibration control system with Magnetorheological (MR) Damper. A typical jacket offshore platform in Mexico Gulf is selected as experimental prototype. The model of the jacket platform is designed based on dynamical similarity criterion by the scale of 1:50. Furthermore, the optimal semi-active system of MR damper is designed by fuzzy control theory. In order to investigate the control effect of MR damper on the jacket platform under regular and random wave state, several model experiment load cases are performed. The experimental results show that the MR system designed by fuzzy theory can reduce the vibration of the platform effectively and in the same time the control effect is stable.


Sign in / Sign up

Export Citation Format

Share Document