1111 FEM Analysis of Thermal Stress on Solder Ball for BGA Type LSI Package

2008 ◽  
Vol 2008.6 (0) ◽  
pp. 227-228
Author(s):  
Kento KIMURA ◽  
Takao IWAMOTO ◽  
Shozo NAKAMURA
2013 ◽  
Vol 365-366 ◽  
pp. 331-334
Author(s):  
Xue Ping Ren ◽  
Jian Da Gao

The role of converter spherical hinge is one of the main components, combined with practical work and With help of FEM, Thermal Stress coupling field of spherical washer can been obtained through numerical simulation. The result supplies substantial theoretical basis for further structure design and optimum design of mechanism.


2007 ◽  
Vol 336-338 ◽  
pp. 1531-1533
Author(s):  
Jian Qiang Qi ◽  
Yong Huang ◽  
Shi Xi Ouyang ◽  
Nan Li ◽  
Jiang Li ◽  
...  

By means of a finite element method model, the effects of property parameters of refractory on thermal stress of injection lance have been studied. The results show that the maximum thermal stress increases with the improvement of thermal conductivity and elastic modulus of refractory, while it decreases at first and then increases with the improvement of the coefficient of expansion of refractory.


2008 ◽  
Vol 373-374 ◽  
pp. 786-789 ◽  
Author(s):  
Zhi Li ◽  
Min You ◽  
Xiao Ling Zheng ◽  
Mei Rong Zhao ◽  
Jia Ling Yan

The 3-D elasto-plastic finite element method (FEM) was used to analyze the thermal stress in the laminated composite (SiC/6061Al) under the condition of a temperature cycling of 200 0C-30 0C- 200 0C-30 0C. The results from the FEM analysis showed that the hysteretic peak value of the von Mises equivalent stress in the substrate 6061Al was increased significantly as the temperature loading cycles processed on but it was nearly the same after the first cycle in the interface layer SiC of the laminated composite. The elastic strain in the substrate 6061Al varied within the range of -0.15% to 0.15% and the maximum plastic deformation was equal to about 0.26 %. The results also showed that the maximum normal stress Sx was increased from 32.8 MPa to 87.9 MPa after ten cycles and the work-hardening of the substrate 6061Al occurred during the stress and strain hysteresis loop.


Author(s):  
Jian Qiang Qi ◽  
Yong Huang ◽  
Shi Xi Ouyang ◽  
Nan Li ◽  
Jiang Li ◽  
...  
Keyword(s):  

Author(s):  
Tatsuo NISHIZAWA ◽  
Masashi KOYANAGAWA ◽  
Yasushi TAKEUCHI ◽  
Kazuyuki KUBO ◽  
Toru YOSHIMOTO

2005 ◽  
Vol 297-300 ◽  
pp. 1698-1703
Author(s):  
Junya Sumita ◽  
Taiju Shibata ◽  
Masahiro Ishihara ◽  
Tatsuo Iyoku ◽  
Nobumasa Tsuji

Graphite materials are used for structural components in the core of high temperature gas-cooled reactors (HTGRs) because of their excellent thermo/mechanical properties. When the core temperature is raised at an accident, the thermal stress of the components is induced, and it enhances the fracture probability of them. In general, the thermal conductivity of graphite is decreased by neutron irradiation due to irradiation-induced defects preventing heat conduction by phonon. It is hence expected that decreased thermal conductivity is recovered to some extent by thermal annealing at the accident. Therefore, the consideration of the thermal annealing effect is placed as much important subject in the fracture/strength evaluation of the graphite components at the accident. In the present study, the thermal stress and the fracture probability of graphite components influenced by the thermal annealing were investigated by a finite element method (FEM) analysis. It was shown that the annealing effect decreases the thermal stress and a certain level of the fracture probability.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 697 ◽  
Author(s):  
Kawai ◽  
Kakisawa ◽  
Kubo ◽  
Yamaguchi ◽  
Yokoi ◽  
...  

For design of multi-layered environmental barrier coatings (EBCs), it is essential to assure mechanical reliability against interface crack initiation and propagation induced by thermal stress owing to a misfit of the coefficients of thermal expansion between the coating layers and SiC/SiC substrate. We conducted finite element method (FEM) analyses to evaluate energy release rate (ERR) for interface cracks and performed experiment to obtain interface fracture toughness to assess mechanical reliability of an EBC with a function of thermal barrier (T/EBC; SiC/SiAlON/mullite/Yb-silicate gradient composition layer/Yb2SiO5 with porous segment structure) on an SiC/SiC substrate under thermal stress due to cooling in fabrication process. Our FEM analysis revealed that a thinner SiAlON layer and a thicker mullite layer are most suitable to reduce ERRs for crack initiation at the SiC/SiAlON, SiAlON/mullite and mullite/Yb2Si2O7 interfaces. Interface fracture tests of the T/EBC with layer thicknesses within the proposed range exhibited fracture at the SiC/SiAlON and SiAlON/mullite interfaces. We also estimated the approximate fracture toughness for the SiC/SiAlON and SiAlON/mullite interfaces and lower limit of fracture toughness for the mullite/Yb2Si2O7 interface. Comparison between ERR and fracture toughness indicates that the fabricated T/EBC possesses sufficient mechanical reliability against interface crack initiation and propagation.


Sign in / Sign up

Export Citation Format

Share Document