1320 Damage detection in CFRP laminates by broadband Lamb wave propagation using MFC actuator and FBG sensor

2008 ◽  
Vol 2008.6 (0) ◽  
pp. 377-378
Author(s):  
Fumihiro NAKAYAMA ◽  
Yoji OKABE
2013 ◽  
Vol 588 ◽  
pp. 140-148 ◽  
Author(s):  
Rafal Radecki ◽  
Wieslaw Jerzy Staszewski ◽  
Tadeusz Uhl

Lamb waves are the most widely used guided ultrasonic waves for structural damage detection. One of the major problems associate with Lamb wave propagation is the effect of temperature on wave propagation parameters. It is important that these parameters are more sensitive to damage than to varying temperature. The paper demonstrates how amplitude and arrival time of Lamb waves are affected by temperature. The analysis is performed for the experimental data gathered from Lamb wave propagation in a damaged aluminium plate. A simple clustering algorithm is used to distinguish between "undamaged" and "damaged" conditions in the presence of changing temperature.


2018 ◽  
Vol 9 (1) ◽  
pp. 46 ◽  
Author(s):  
Nobuyuki Toyama ◽  
Jiaxing Ye ◽  
Wataru Kokuyama ◽  
Shigeki Yashiro

This study demonstrates a rapid non-contact ultrasonic inspection technique by visualization of Lamb wave propagation for detecting impact damage in carbon fiber reinforced polymer (CFRP) laminates. We have developed an optimized laser ultrasonic imaging system, which consists of a rapid pulsed laser scanning unit for ultrasonic generation and a laser Doppler vibrometer (LDV) unit for ultrasonic reception. CFRP laminates were subjected to low-velocity impact to introduce barely visible impact damage. In order to improve the signal-to-noise ratio of the detected ultrasonic signal, retroreflective tape and a signal averaging process were used. We thus successfully visualized the propagation of the pulsed Lamb A0 mode in the CFRP laminates without contact. Interactions between the Lamb waves and impact damage were clearly observed and the damage was easily detected through the change in wave propagation. Furthermore, we demonstrated that the damage could be rapidly detected without signal averaging. This method has significant advantages in detecting damage compared to the conventional method using a contact resonant ultrasonic transducer due to the absence of the ringing phenomenon when using the LDV.


Sign in / Sign up

Export Citation Format

Share Document