G1301-1-2 Sturdy on Near-dry Cutting of Aluminum Alloy : No.2 Cutting Performance of Cemented Carbide Tool

2009 ◽  
Vol 2009.4 (0) ◽  
pp. 211-212
Author(s):  
Yukio MAEDA ◽  
Masashi IKEZAKI ◽  
Masami MASUDA ◽  
Shinichiro TOKUTAKE
2010 ◽  
Vol 2010.8 (0) ◽  
pp. 235-236
Author(s):  
Yukio MAEDA ◽  
Kazuhide MATSUMOTO ◽  
Akeomi WATANABE ◽  
Masami MASUDA ◽  
Shinichiro TOKUTAKE

2012 ◽  
Vol 522 ◽  
pp. 231-235 ◽  
Author(s):  
Yi Hang Fan ◽  
Min Li Zheng ◽  
Zhe Li ◽  
Song Tao Wang ◽  
Ying Bin Li

The machining efficiency of titanium alloy Ti6Al4V is low and the tool wear is serious. In this paper, uncoated carbide tool and two kinds of coated cemented carbide tool were used for dry turning titanium alloy. The experiments used CCD Observing System and the EDAX analysis of SEM to study tool wear mechanism and analyze the cutting performance through tool life, cutting force and cutting temperature. The results show that the main wear reasons are adhesion, diffusion and oxidation wear. For coated tool, the coating peeled off first, and then tool substrate damaged. Compared with coated carbide tool, the uncoated carbide tool with fine grain has longer tool life and lower cutting force and cutting temperature. The changes of cutting force and cutting temperature with cutting speed are not obvious when using the ccomposite coating (TiAlN and AlCrN) carbide tool. The results can help to choose tool material reasonably and control tool wear.


2005 ◽  
Vol 291-292 ◽  
pp. 115-120 ◽  
Author(s):  
Fei Hu Zhang ◽  
J.C. Gui ◽  
Yi Zhi Liu ◽  
Hua Li Zhang

Nano cemented carbide is a new style cutter material. Because its grain size is very small, it is superior to common cemented carbide in properties, such as high hardness, fracture toughness, flexural strength and higher abrasion resistance. As a cutter material, nano cemented carbide has wide use. In this paper, nano cemented carbide tool was ground with ELID technology, and the cutting properties of nano cemented carbide were studied, and the difference in cutting properties among the ultra-fine grain, common cemented carbide and nano cemented carbide was analyzed under the same condition. Results imply that the ground surface roughness of nano cemented carbide is obviously lower than that of common cemented carbide, and the tool life of nano cemented carbide is 5-7 times longer than that of common cemented carbide at low cutting speed.


1996 ◽  
Vol 86-87 ◽  
pp. 678-685 ◽  
Author(s):  
M.A. Taher ◽  
W.F. Schmidt ◽  
W.D. Brown ◽  
S. Nasrazadani ◽  
H.A. Nasseem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document