K-1338 Study on Turbulence Flows at a T-Junction Piping System : Numerical Simulation of Low Frequency Velocity Fluctuations in Nuclear Power Plants

2001 ◽  
Vol II.01.1 (0) ◽  
pp. 189-190
Author(s):  
Toshiharu MURAMATSU ◽  
Kozo SUDO ◽  
Hideki HIBARA
Author(s):  
Se´bastien Caillaud ◽  
Rene´-Jean Gibert ◽  
Pierre Moussou ◽  
Joe¨l Cohen ◽  
Fabien Millet

A piping system of French nuclear power plants displays large amplitude vibrations in particular flow regimes. These troubles are attributed to cavitation generated by single-hole orifices in depressurized flow regimes. Real scale experiments on high pressure test rigs and on-site tests are then conducted to explain the observed phenomenon and to find a solution to reduce pipe vibrations. The first objective of the present paper is to analyze cavitation-induced vibrations in the single-hole orifice. It is then shown that the orifice operates in choked flow with supercavitation, which is characterized by a large unstable vapor pocket. One way to reduce pipe vibrations consists in suppressing the orifices and in modifying the control valves. Three technologies involving a standard trim and anti-cavitation trims are tested. The second objective of the paper is to analyze cavitation-induced vibrations in globe-style valves. Cavitating valves operate in choked flow as the orifice. Nevertheless, no vapor pocket appears inside the pipe and no unstable phenomenon is observed. The comparison with an anti-cavitation solution shows that cavitation reduction has no impact on low frequency excitation. The effect of cavitation reduction on pipe vibrations, which involve essentially low frequencies, is then limited and the first solution, which is the standard globe-style valve installed on-site, leads to acceptable pipe vibrations. Finally, this case study may have consequences on the design of piping systems. First, cavitation in orifices must be limited. Choked flow in orifices may lead to supercavitation, which is here a damaging and unstable phenomenon. The second conclusion is that the reduction of cavitation in globe-style valve in choked flow does not reduce pipe vibrations. The issue is then to limit cavitation erosion of valve trims.


Author(s):  
Omid Malekzadeh ◽  
Matthew Monid ◽  
Michael Huang

Abstract Three-Dimensional (3D) CAD models are utilized by many designers; however, they are rarely utilized to their full potential. The current mainstream method of design process and communication is through design documentation. They are limited in depth of information, compartmentalized by discipline, fragmented into various segments, communicated through numerous layers, and finally, printed onto an undersized paper by the stakeholders and end-users. Large nuclear projects, such as refurbishments and decommissioning, suffer from spatial, interface, and interreference challenges, unintentional cost and schedule overruns, and quality concerns that can be rooted to the misalignments between designed and in-situ or previously as-built conditions that tend to stem from inaccessibility and lack of adequate data resolution during the transfer of technical information. This paper will identify the technologies and the methodology used during several piping system modifications of existing nuclear power plants, and shares the lessons learned with respect to the benefits and shortcomings of the approach. Overall, it is beneficial to leverage available multi-dimensional technologies to enhance various engineering and execution phases. The utilization and superposition of various spatial models into 3D and 4D formats, enabled the modification projects to significantly reduce in-person plant walkdown efforts, provide highly accurate as-found data, and enable stakeholders of all disciplines and trades to review the as-found, as-designed, and simulated as-installed modification; including the steps in between without requiring significant plant visits. This approach will therefore reduce the field-initiated changes that tend to result in design/field variations; resulting in less reliance on Appendix T of ASME BPVC Section III, reduction in the design registration reconciliations efforts, and it aligns with the overarching goal of EPRI guideline NCIG-05. Beyond the benefits to design and execution, the multidimensional approach will provide highly accurate inputs to some of the nuclear safety’s Beyond Design Basis Assessments (BDBA) and allowed for the incorporation of actual design values as input and hence removing the unnecessary over-conservatisms within some of the inputs.


Author(s):  
Yukio Takahashi ◽  
Yoshihiko Tanaka

It is essential to predict the behavior of nuclear piping system under seismic loading to evaluate the structural integrity of nuclear power plants. Relatively large stress cycles may be applied to the piping systems under severe seismic loading and plastic deformation may occur cyclically in some portion of the systems. Accurate description of inelastic deformation under cyclic loading is indispensable for the precise estimation of strain cycles and accumulation potentially leading to the failure due to fatigue-ratcheting interaction. Elastic-plastic constitutive models based on the nonlinear kinematic hardening rule proposed by Ohno and Wang were developed for type 316 austenitic stainless steel and carbon steel JIS STPT410 (similar to ASTM A106 Gr.B), both of which are used in piping systems in nuclear power plants. Different deformation characteristics under cyclic loading in terms of memory of prior hardening were observed on these two materials and they were reflected in the modeling. Results of simulations under various loading conditions were compared with the test data to demonstrate the high capability of the constitutive models.


1991 ◽  
Vol 113 (2) ◽  
pp. 268-272
Author(s):  
H. Shibata

This paper deals with an assumed process of piping failure in nuclear power plants which may cause a catastrophic accident during a destructive earthquake condition. The type of failure discussed is the so-called double-ended guillotine break, DEGB. As a safety problem, we are going to eliminate this type of failure by LBB, and we have assumed that this would then not occur by an earthquake. The author tries to clarify the possibility of failure during earthquakes. He reviews his related papers since 1973, and discusses zipping failure of snubbers and supporting devices. He shows a procedure to simulate the zipping failure of a piping system supported by snubbers.


Author(s):  
L. Shamis ◽  
T. Matchenko ◽  
T. Veriuzhska

Low-frequency dynamic loads from earthquakes were taken into account in the design of the equipment and pipelines of the existing nuclear power plants. Therefore, in the case of an aircraft crash impact on a nuclear reactor containment, exciting intense high-frequency vibrations of the building, the reliability of the nuclear power plant cannot be guaranteed without the failure risk assessment of objects that are involved in the safe shutdown. The paper suggests a method of the failure risk assessment using the concept of the ultimate resistance of pipelines and equipment of nuclear power plants to vibrations typical for the “aircraft crash” emergency design situation. The ultimate resistance is defined by the value of the load impulse, the application of which results in the probability of failure of the considered pipeline or equipment of 0.01 taking into account that it performs functions to provide 0.50 safety.


2012 ◽  
Vol 43 ◽  
pp. 276-281 ◽  
Author(s):  
Shi Qiang ◽  
Ma Rongyi ◽  
Li Juan ◽  
Zuo Jiaxu ◽  
Zhang Chunming ◽  
...  

Author(s):  
Akira Maekawa ◽  
Tsuneo Takahashi ◽  
Takashi Tsuji ◽  
Michiyasu Noda

In nuclear power plants, vibration stress of piping is frequently measured to prevent the occurrence of fatigue failure. A simpler and more efficient measurement method is desired for rapid integrity evaluation of piping. In this study, a method to measure vibration stress in a noncontact manner using optical displacement sensors is presented and validated. The proposed method estimates vibration-induced stress of small-bore piping directly using noncontact sensors based on a light-emission diode. First, the noncontact measurement method was proposed, and the measurement instrument based on the proposed method was developed for the validation. Next, vibration measurement experiments using the instrument were conducted for a mock-up piping system and an actual piping system. The measurement results were compared with the values measured by the conventional method of known accuracy using strain gauges. From this comparison, the proposed noncontact measurement method was demonstrated to be able to provide sufficient accuracy for practical use.


Sign in / Sign up

Export Citation Format

Share Document