OS1012 Spherical Indentation Technique for Low-invasive Measurement for Young's Modulus of Human Soft Tissues

2009 ◽  
Vol 2009 (0) ◽  
pp. 784-785
Author(s):  
Atsushi SAKUMA ◽  
Mitsuhiro TANI

Author(s):  
Atsushi Sakuma

The characteristics of human skin are easily changed by the states of the body because it is very sensitive to environmental transformation. And the development of the condition measurement technology of human skin is very important for improvement in QOL because it reflects body condition. Then, various devices for the condition measurement of human skin had been developed but there was no technique which can evaluate the skin by objective parameter easily. In this paper, spherical indentation testing is studied to evaluate the dimension and rigidity of thin soft-tissues like human skin. Here, the Hertz contact theory is functionally expanded to evaluate indentations for the thin tissues. In the expansions, the technique used for evaluating the thickness of finite specimens is first explained by analyzing the experimental results of indentations. Then, the Young’s modulus of the tissue with finite thickness is theoretically derived by defining an equivalent indentation strain for the analysis of the indentation process. The expansions are examined to evaluate its reliability by applying them to measure Young’s modulus of some thin materials. Furthermore, this technology is applied to the elasticity investigation of the human skin. Especially, the measurement results of elasticity characteristics of the skin of human face are shown as the first report. The influences of sex and ultraviolet rays and so on are discussed to reveal the mechanics of human skin in this report. Moreover, it is discussed about the validity of the device which measures the elasticity of the skin of human face.



Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 67
Author(s):  
Song Joo Lee ◽  
Yong-Eun Cho ◽  
Kyung-Hyun Kim ◽  
Deukhee Lee

Knowing the material properties of the musculoskeletal soft tissue could be important to develop rehabilitation therapy and surgical procedures. However, there is a lack of devices and information on the viscoelastic properties of soft tissues around the lumbar spine. The goal of this study was to develop a portable quantifying device for providing strain and stress curves of muscles and ligaments around the lumbar spine at various stretching speeds. Each sample was conditioned and applied for 20 repeatable cyclic 5 mm stretch-and-relax trials in the direction and perpendicular direction of the fiber at 2, 3 and 5 mm/s. Our device successfully provided the stress and strain curve of the samples and our results showed that there were significant effects of speed on the young’s modulus of the samples (p < 0.05). Compared to the expensive commercial device, our lower-cost device provided comparable stress and strain curves of the sample. Based on our device and findings, various sizes of samples can be measured and viscoelastic properties of the soft tissues can be obtained. Our portable device and approach can help to investigate young’s modulus of musculoskeletal soft tissues conveniently, and can be a basis for developing a material testing device in a surgical room or various lab environments.



2010 ◽  
Vol 263 (1-2) ◽  
pp. 168-176 ◽  
Author(s):  
S. Mohammad Hesabgar ◽  
Harry Marshall ◽  
Sumit K. Agrawal ◽  
Abbas Samani ◽  
Hanif M. Ladak




2006 ◽  
pp. 469-476 ◽  
Author(s):  
M. M. Doyley ◽  
J. C. Bamber ◽  
P. M. Meaney ◽  
F. G. Fuechsel ◽  
N. L. Bush ◽  
...  


2006 ◽  
Vol 21 (3) ◽  
pp. 677-684 ◽  
Author(s):  
D. Klötzer ◽  
Ch. Ullner ◽  
E. Tyulyukovskiy ◽  
N. Huber

A neural network-based analysis method for the identification of a viscoplasticity model from spherical indentation data, developed in the first part of this work [J. Mater. Res.21, 664 (2006)], was applied for different metallic materials. Besides the comparison of typical parameters like Young’s modulus and yield stress with values from tensile experiments, the uncertainties in the identified material parameters representing modulus, hardening behavior, and viscosity were investigated in relation to different sources. Variations in the indentation position, tip radius, force application rate, and surface preparation were considered. The extensive experimental validation showed that the applied neural networks are very robust and show small variation coefficients, especially regarding the important parameters of Young’s modulus and yield stress. On the other hand, important requirements were quantified, which included a very good spherical indenter geometry and good surface preparation to obtain reliable results.



1996 ◽  
Vol 43 (1) ◽  
pp. 191-194 ◽  
Author(s):  
E.J. Chen ◽  
J. Novakofski ◽  
W.K. Jenkins ◽  
W.D. O'Brien


Sign in / Sign up

Export Citation Format

Share Document