OS0618 A study of material properties for Al-Mg base aluminum alloy produced by heated mould continuous casting

2012 ◽  
Vol 2012 (0) ◽  
pp. _OS0618-1_-_OS0618-3_
Author(s):  
Shuhei TAKEUCHI ◽  
Mitsuhiro OKAYASU ◽  
Hiroaki OHFUJI ◽  
Tetsuro SHIRAISHI
Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 954
Author(s):  
Hailong Wang ◽  
Wenping Deng ◽  
Tao Zhang ◽  
Jianhua Yao ◽  
Sujuan Wang

Material properties affect the surface finishing in ultra-precision diamond cutting (UPDC), especially for aluminum alloy 6061 (Al6061) in which the cutting-induced temperature rise generates different types of precipitates on the machined surface. The precipitates generation not only changes the material properties but also induces imperfections on the generated surface, therefore increasing surface roughness for Al6061 in UPDC. To investigate precipitate effect so as to make a more precise control for the surface quality of the diamond turned Al6061, it is necessary to confirm the compositions and material properties of the precipitates. Previous studies have indicated that the major precipitate that induces scratch marks on the diamond turned Al6061 is an AlFeSi phase with the composition of Al86.1Fe8.3Si5.6. Therefore, in this paper, to study the material properties of the AlFeSi phase and its influences on ultra-precision machining of Al6061, an elastoplastic-damage model is proposed to build an elastoplastic constitutive model and a damage failure constitutive model of Al86.1Fe8.3Si5.6. By integrating finite element (FE) simulation and JMatPro, an efficient method is proposed to confirm the physical and thermophysical properties, temperature-phase transition characteristics, as well as the stress–strain curves of Al86.1Fe8.3Si5.6. Based on the developed elastoplastic-damage parameters of Al86.1Fe8.3Si5.6, FE simulations of the scratch test for Al86.1Fe8.3Si5.6 are conducted to verify the developed elastoplastic-damage model. Al86.1Fe8.3Si5.6 is prepared and scratch test experiments are carried out to compare with the simulation results, which indicated that, the simulation results agree well with those from scratch tests and the deviation of the scratch force in X-axis direction is less than 6.5%.


2002 ◽  
Vol 396-402 ◽  
pp. 137-142 ◽  
Author(s):  
Yasuhiro Uetani ◽  
Masayoshi Dohi ◽  
H. Takagi ◽  
Kenji Matsuda ◽  
Susumu Ikeno

2021 ◽  
Vol 315 ◽  
pp. 31-36
Author(s):  
Xue Ying Chen ◽  
Li Hua Zhan ◽  
Hai Long Liao ◽  
Yuan Gao

Creep age forming technology (CAF) has been widely used to manufacture large integral panels in aerospace industry. However, due to the bending of the sheet metal, the stress states usually changes along the thickness direction during the CAF process, resulting in a complex distribution of stress. In addition, deformation texture is introduced when the sheet has a large pre-deformation, which also greatly affects the shape and performance of the component after aging. In this paper, the anisotropy in compression creep-ageing behavior of 2219-T3 aluminum alloy was studied. It was found that there is obvious anisotropy of compressive creep strains, the creep strain is the largest when the applied stress is along the rolling direction (RD) and the smallest when the applied stress is along the transverse direction (TD). The results of room temperature (25 ° C) and high temperature (165 ° C) tensile property test shows that the as-received material properties has obvious in-planar anisotropy, and the yield strength in the RD is the largest, but the 45° and TD are basically the same. Interestingly, the anisotropy of yield strength after SFA and compressive stress creep aging has basically disappeared, that is,the material properties tended to be isotropic after ageing.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Mohamed A. Taha ◽  
Adel T. Abbas ◽  
Faycal Benyahia ◽  
Hamad F. Alharbi ◽  
B. Guitián ◽  
...  

The oxidation of aluminum machining chips retards the successful recycling through the conventional remelting route. A promising approach to overthrow this problem is the utilization of solid state recycling in converting aluminum machining chips directly into semifinished products to eliminate the cost of the remelting process and reduce CO2 emissions. Therefore, in recent work, chips of aluminum alloy (AA6061) were recycled by compaction and then extrusion conducted at 500°C, followed by equal channel pressing (ECAP) to study the resultant material properties and its microstructure. Moreover, the present investigation explores the influence of ECAP after hot extrusion on the corrosive behaviour of the recycled samples in saline solution (NaCl) by electrochemical impedance spectroscopy (EIS) and linear polarization (LP). The results demonstrated a remarkable enhancement of the recycled chips’ properties subjected to hot extrusion followed by the ECAP process. Furthermore, the successive ECAP passes leads to increased film thickness and decreased corrosion rate.


Author(s):  
Bai-Qiao Chen ◽  
C. Guedes Soares

The present work aims at better understanding and predicting the thermal and structural responses of aluminum components subjected to welding, contributing to the design and fabrication of aluminum ships such as catamarans, lifesaving boats, tourist ships, and fast ships used in transportation or in military applications. Taken into consideration the moving heat source in metal inert gas (MIG) welding, finite element models of plates made of aluminum alloy are established and validated against published experimental results. Considering the temperature-dependent thermal and mechanical properties of the aluminum alloy, thermo-elasto-plastic finite element analyses are performed to determine the size of the heat-affected zone (HAZ), the temperature histories, the distortions, and the distributions of residual stresses induced by the welding process. The effects of the material properties on the finite element analyses are discussed, and a simplified model is proposed to represent the material properties based on their values at room temperature.


Sign in / Sign up

Export Citation Format

Share Document