Effect of Mechanical Vibration on Semi-Continuous Casting of a Hypereutectic A390 Aluminum Alloy

2002 ◽  
Vol 396-402 ◽  
pp. 137-142 ◽  
Author(s):  
Yasuhiro Uetani ◽  
Masayoshi Dohi ◽  
H. Takagi ◽  
Kenji Matsuda ◽  
Susumu Ikeno
Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2013 ◽  
Author(s):  
Chen Shi ◽  
Gaofeng Fan ◽  
Xuqiang Mao ◽  
Daheng Mao

In order to achieve the industrial application of ultrasonic energy in the continuous casting and rolling production of aluminum alloy, a new type of L-shaped ultrasonic rod was used to introduce an ultrasonic bending vibration into the aluminum melt in the launder during the horizontal twin-roll continuous casting and rolling process of a 1060 aluminum alloy. The effects of the ultrasonic bending vibration on the microstructure and properties of the 1060 aluminum alloy cast rolling strip and its subsequent cold rolling strip were studied experimentally, and the effect of the ultrasonic-assisted refining with different amounts of Al-Ti-B refiner was explored. The results show that under the same addition amount of Al-Ti-B refiner, the ultrasonic bending vibration can refine the grains of the cast rolling strip, make the distribution of precipitates more uniform, reduce the slag inclusion defects, and improve the mechanical properties to a certain extent. The microstructure and properties of the ultrasonic cast rolling strip with 0.18 wt% Al-Ti-B refiner or 0.12 wt% Al-Ti-B refiner are better than those of the conventional cast rolling strip, but the microstructure and properties of the ultrasonic cast rolling strip with 0.09 wt% Al-Ti-B refiner are slightly worse than those of the conventional cast rolling strip. Moreover, after cold rolling, the effect of the ultrasonic bending vibration on the improvement of the microstructure and properties of the aluminum alloy strip is inherited. A comprehensive analysis shows that the use of ultrasonic energy in this paper cannot completely replace the effect of the Al-Ti-B refiner, but it can reduce the addition amount of the Al-Ti-B refiner by 1/3.


2018 ◽  
Vol 913 ◽  
pp. 83-89
Author(s):  
Yu Wang ◽  
Yun Lai Deng ◽  
Jin Zhang ◽  
Yong Zhang ◽  
Xin Ming Zhang

This Paper studied the precipitation behaviour and creep deformation of 2124 aluminum alloy based on the concept of complex field. A mechanical vibration field was introduced into the creep aging forming process of 2124 aluminum alloy, and its effects on creep deformation, precipitations behaviour and mechanical properties under the condition of double curvature loading and aging temperature were investigated by three-dimensional scanning technique, TEM and tensile test, respectively. The results showed that the spring back value along the rolling and transverse direction presented after creep aging forming were reduced by 25% and 15% respectively. The volume fraction of precipitates increased and distributed more densely and uniformly. Meanwhile, the yield stress improved by 15MPa and the degree of anisotropy decreased by 17% with mechanical vibration field applied to the manufacturing process.


2012 ◽  
Vol 2012 (0) ◽  
pp. _OS0618-1_-_OS0618-3_
Author(s):  
Shuhei TAKEUCHI ◽  
Mitsuhiro OKAYASU ◽  
Hiroaki OHFUJI ◽  
Tetsuro SHIRAISHI

2010 ◽  
Vol 97-101 ◽  
pp. 361-364
Author(s):  
R.Y. Zhang ◽  
S.W. Yu ◽  
K.H. Zhang ◽  
F.C. Wang

7A09 aluminum alloy is served as an important structural material in many fields. In this paper, power spinning of semi-continuous casting 7A09 aluminum alloy tube blank was carried out, and the effects of process parameters, such as spinning temperature and roller feeding ratio, on spinnability were analyzed, further the mechanical property was tested on a tensile testing machine. The results show that: at 300°C and 1.2mm/r roller feeding ratio, semi-continuous casting 7A09 aluminum alloy tube blank has good spinnability; after spun, the yield strength is increased 44%, and elongation is increased 130%.


2008 ◽  
Vol 58 (12) ◽  
pp. 650-655 ◽  
Author(s):  
Hidetoshi Takagi ◽  
Yasuhiro Uetani ◽  
Masayoshi Dohi ◽  
Toru Watanabe ◽  
Tomokazu Yamashita ◽  
...  

2015 ◽  
Vol 817 ◽  
pp. 3-7
Author(s):  
Xing Han ◽  
Bo Shao ◽  
Hai Tao Zhang ◽  
Ke Qin ◽  
Jian Zhong Cui

With the cladding casting equipment, which was self-designed and self-made, 4045/3003 composite ingot, which is in size of Φ140mm/Φ110mm, has been manufactured by direct cooling continuous casting by adjusting and optimizing the technological parameters. The process was investigated involving macro-morphology and microstructure near the interface between the two different aluminum alloys at different positions, and distributions of both components and hardness of the cladding ingot. In addition, the tensile strengths were tested. The results showed that metallurgical bonding of two different aluminum alloys could be obtained by direct-chill semi-continuous casting process. The diffusion layer, which is about 15μm on average, has formed on the two sides of composite interface during casting process. From the side of 4045 aluminum alloy to the side of 3003 aluminum alloy, the Si content has a trend to decrease, as well as the hardness, while the Mn content has a trend to increase gradually. Tensile strength of the coated ingot reaches 117.3MPa, which is higher than the core-material matrix (3003 aluminum alloy), indicating the bonding of the two alloys belongs to metallurgical bonding.


2021 ◽  
Vol 75 (1) ◽  
pp. 31-37
Author(s):  
Aleksandra Pataric ◽  
Marija Mihailovic ◽  
Branislav Markovic ◽  
Miroslav Sokic ◽  
Andreja Radovanovic ◽  
...  

Microstructure assessment is crucial for the design and production of high-quality alloys such as cast aluminum alloy ingots. Along with the effect of a more homogeneous microstructure to result in much better mechanical properties, better as-cast alloy quality indicates a higher efficiency of the aluminum alloys production process. During the aluminum alloy solidification process many microstructural defects can occur, which deteriorate the mechanical properties and hence decrease the usability of such an ingot. Application of the electromagnetic field during the vertical continuous casting process significantly reduces occurrence of these defects. In the present study, EN AW 7075 alloy samples were cast with and without application of an electromagnetic field and examined regarding the microstructure, electrical conductivity, and changes in the phase composition. The obtained results clearly show that it is possible to decrease or avoid casting defects by the electromagnetic field application as verified by the microstructure characterization and quantification, electrical conductivity tests and differential thermal analysis (DTA).


Sign in / Sign up

Export Citation Format

Share Document