C201 Evaluation of tsunami run-up on land with three-dimensional fluid simulation

2012 ◽  
Vol 2012.17 (0) ◽  
pp. 295-296
Author(s):  
Taisuke SUGII ◽  
Nobuhiro KANDA ◽  
Eiji ISHII ◽  
Kazue OKUMURA ◽  
Tadashi IIJIMA
2007 ◽  
Vol 54 (8) ◽  
pp. 618-629 ◽  
Author(s):  
Byung Ho Choi ◽  
Dong Chule Kim ◽  
Efim Pelinovsky ◽  
Seung Buhm Woo

2011 ◽  
Vol 1 (32) ◽  
pp. 14 ◽  
Author(s):  
Tomoaki Nakamura ◽  
Norimi Mizutani ◽  
Koji Fujima

A three-dimensional two-way coupled fluid-sediment interaction model (FSM) is applied to investigate run-up tsunami deformation and tsunami force acting on square structures on land. The FSM consists of a generalized Navier-Stokes solver (GNS) for multi-phase flow including porous flow, a volume of fluid module (VFM) for air-water interface tracking, and a sediment transport module (STM) for fluid-sediment interface tracking. In the FSM, a two-way coupling procedure is implemented at each time step to connect the GNS with the VFM and the STM. The predictive capability of the FSM is demonstrated through comparison between numerical results and experimental data in terms of water surface elevation, inundation depth, and tsunami force. The process of tsunami run-up in the presence of square structures is investigated in terms of vortex structures. The result shows that the FSM is a useful tool providing detailed information in discussing run-up tsunami deformation and tsunami force.


2021 ◽  
Vol 13 (7) ◽  
pp. 1399
Author(s):  
Quang Nguyen Hao ◽  
Satoshi Takewaka

In this study, we analyze the influence of the Great East Japan Earthquake, which occurred on 11 March 2011, on the shoreline of the northern Ibaraki Coast. After the earthquake, the area experienced subsidence of approximately 0.4 m. Shoreline changes at eight sandy beaches along the coast are estimated using various satellite images, including the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), ALOS AVNIR-2 (Advanced Land Observing Satellite, Advanced Visible and Near-infrared Radiometer type 2), and Sentinel-2 (a multispectral sensor). Before the earthquake (for the period March 2001–January 2011), even though fluctuations in the shoreline position were observed, shorelines were quite stable, with the averaged change rates in the range of ±1.5 m/year. The shoreline suddenly retreated due to the earthquake by 20–40 m. Generally, the amount of retreat shows a strong correlation with the amount of land subsidence caused by the earthquake, and a moderate correlation with tsunami run-up height. The ground started to uplift gradually after the sudden subsidence, and shoreline positions advanced accordingly. The recovery speed of the beaches varied from +2.6 m/year to +6.6 m/year, depending on the beach conditions.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


2015 ◽  
Vol 124 (2) ◽  
pp. 177-192 ◽  
Author(s):  
Nobuhisa MATSUTA ◽  
Yasuhiro SUZUKI ◽  
Nobuhiko SUGITO ◽  
Takashi NAKATA ◽  
Mitsuhisa WATANABE

Sign in / Sign up

Export Citation Format

Share Document