scholarly journals A111 Evaluation of Turbulent Heat Flux Models for Turbulent heat transfer in a Square Duct with One Roughened Wall

2001 ◽  
Vol 2001 (0) ◽  
pp. 27-28
Author(s):  
Hitoshi SUGIYAMA ◽  
Masahiro TOUSEN
2013 ◽  
Vol 65 (3) ◽  
Author(s):  
Chiranth Srinivasan ◽  
Dimitrios V. Papavassiliou

This work serves a two-fold purpose of briefly reviewing the currently existing literature on the scaling of thermal turbulent fields and, in addition, proposing a new scaling framework and testing its applicability. An extensive set of turbulent scalar transport data for turbulent flow in infinitely long channels is obtained using a Lagrangian scalar tracking approach combined with direct numerical simulation of turbulent flow. Two cases of Poiseuille channel flow, with friction Reynolds numbers 150 and 300, and different types of fluids with Prandtl number ranging from 0.7 to 50,000 are studied. Based on analysis of this database, it is argued that the value and the location of the maximum normal turbulent heat flux are important scaling parameters in turbulent heat transfer. Implementing such scaling on the mean temperature profile for different fluids and Reynolds number cases shows a collapse of the mean temperature profiles onto a single universal profile in the near wall region of the channel. In addition, the profiles of normal turbulent heat flux and the root mean square of the temperature fluctuations appear to collapse on one profile, respectively. The maximum normal turbulent heat flux is thus established as a turbulence thermal scaling parameter for both mean and fluctuating temperature statistics.


2011 ◽  
Vol 110-116 ◽  
pp. 2364-2369
Author(s):  
Amin Etminan ◽  
H. Jafarizadeh ◽  
M. Moosavi ◽  
K. Akramian

In the part 1 of this research, some useful turbulence models presented. In that part advantages of those turbulence models has been gathered. In the next, numerical details and procedure of solution are presented in details. By use of different turbulence models, it has been found that Spallart-Allmaras predicted the lowest value of heat transfer coefficient; in contrast, RSM1 has projected the more considerable results compared with other models; besides, it has been proven that the two-equation models prominently taken lesser time than RSM model. Eventually, the RNG2 model has been introduced as the optimized model of this research; moreover.


2014 ◽  
Vol 753 ◽  
pp. 360-401 ◽  
Author(s):  
R. Vicquelin ◽  
Y. F. Zhang ◽  
O. Gicquel ◽  
J. Taine

AbstractThe role of radiative energy transfer in turbulent boundary layers is carefully analysed, focusing on the effect on temperature fluctuations and turbulent heat flux. The study is based on direct numerical simulations (DNS) of channel flows with hot and cold walls coupled to a Monte-Carlo method to compute the field of radiative power. In the conditions studied, the structure of the boundary layers is strongly modified by radiation. Temperature fluctuations and turbulent heat flux are reduced, and new radiative terms appear in their respective balance equations. It is shown that they counteract turbulence production terms. These effects are analysed under different conditions of Reynolds number and wall temperature. It is shown that collapsing of wall-scaled profiles is not efficient when radiation is considered. This drawback is corrected by the introduction of a radiation-based scaling. Finally, the significant impact of radiation on turbulent heat transfer is studied in terms of the turbulent Prandtl number. A model for this quantity, based on the new proposed scaling, is developed and validated.


2016 ◽  
Vol 804 ◽  
pp. 646-687 ◽  
Author(s):  
Ryoichi Kurose ◽  
Naohisa Takagaki ◽  
Atsushi Kimura ◽  
Satoru Komori

Turbulent heat transfer across a sheared wind-driven gas–liquid interface is investigated by means of a direct numerical simulation of gas–liquid two-phase turbulent flows under non-breaking wave conditions. The wind-driven wavy gas–liquid interface is captured using the arbitrary Lagrangian–Eulerian method with boundary-fitted coordinates on moving grids, and the temperature fields on both the gas and liquid sides, and the humidity field on the gas side are solved. The results show that although the distributions of the total, latent, sensible and radiative heat fluxes at the gas–liquid interface exhibit streak features such that low-heat-flux regions correspond to both low-streamwise-velocity regions on the gas side and high-streamwise-velocity regions on the liquid side, the similarity between the heat-flux streak and velocity streak on the gas side is more significant than that on the liquid side. This means that, under the condition of a fully developed wind-driven turbulent field on both the gas and liquid sides, the heat transfer across the sheared wind-driven gas–liquid interface is strongly affected by the turbulent eddies on the gas side, rather than by the turbulent eddies and Langmuir circulations on the liquid side. This trend is quite different from that of the mass transfer (i.e. $\text{CO}_{2}$ gas). This is because the resistance to heat transfer is normally lower than the resistance to mass transfer on the liquid side, and therefore the heat transfer is controlled by the turbulent eddies on the gas side. It is also verified that the predicted total heat, latent heat, sensible heat and enthalpy transfer coefficients agree well with previously measured values in both laboratory and field experiments. To estimate the heat transfer coefficients on both the gas and liquid sides, the surface divergence could be a useful parameter, even when Langmuir circulations exist.


2016 ◽  
Vol 798 ◽  
pp. 299-349 ◽  
Author(s):  
Bo Sun ◽  
Sudheer Tenneti ◽  
Shankar Subramaniam ◽  
Donald L. Koch

Fluctuations in the gas-phase velocity can contribute significantly to the total gas-phase kinetic energy even in laminar gas–solid flows as shown by Mehrabadi et al. (J. Fluid Mech., vol. 770, 2015, pp. 210–246), and these pseudo-turbulent fluctuations can also enhance heat transfer in gas–solid flow. In this work, the pseudo-turbulent heat flux arising from temperature–velocity covariance, and average fluid-phase conduction during convective heat transfer in a gas–solid flow are quantified and modelled over a wide range of mean slip Reynolds number and solid volume fraction using particle-resolved direct numerical simulations (PR-DNS) of steady flow through a random assembly of fixed isothermal monodisperse spherical particles. A thermal self-similarity condition on the local excess temperature developed by Tenneti et al. (Intl J. Heat Mass Transfer, vol. 58, 2013, pp. 471–479) is used to guarantee thermally fully developed flow. The average gas–solid heat transfer rate for this flow has been reported elsewhere by Sun et al. (Intl J. Heat Mass Transfer, vol. 86, 2015, pp. 898–913). Although the mean velocity field is homogeneous, the mean temperature field in this thermally fully developed flow is inhomogeneous in the streamwise coordinate. An exponential decay model for the average bulk fluid temperature is proposed. The pseudo-turbulent heat flux that is usually neglected in two-fluid models of the average fluid temperature equation is computed using PR-DNS data. It is found that the transport term in the average fluid temperature equation corresponding to the pseudo-turbulent heat flux is significant when compared to the average gas–solid heat transfer over a significant range of solid volume fraction and mean slip Reynolds number that was simulated. For this flow set-up a gradient-diffusion model for the pseudo-turbulent heat flux is found to perform well. The Péclet number dependence of the effective thermal diffusivity implied by this model is explained using a scaling analysis. Axial conduction in the fluid phase, which is often neglected in existing one-dimensional models, is also quantified. As expected, it is found to be important only for low Péclet number flows. Using the exponential decay model for the average bulk fluid temperature, a model for average axial conduction is developed that verifies standard assumptions in the literature. These models can be used in two-fluid simulations of heat transfer in fixed beds. A budget analysis of the mean fluid temperature equation provides insight into the variation of the relative magnitude of the various terms over the parameter space.


Author(s):  
Vera Papp ◽  
Andrea Pucciarelli ◽  
Medhat Sharabi ◽  
Walter Ambrosini

This work proposes simulations of heat transfer under supercritical pressure conditions showing improvements with respect to previous works. This is obtained by the introduction of the Algebraic Heat Flux Model (AHFM) for evaluating the turbulent heat flux in turbulence production terms, using the in-house code THEMAT and the STAR-CCM+ code. The first code makes use of the AHFM also in the energy balance equations, while for the commercial code simplifying assumptions are considered in the implementations. Custom sets of parameters for every condition of inlet temperature and internal diameter are tuned in some cases, driven by the opinion that a single set of parameters cannot be suitable in every flow conditions, considering the complexity of the variables that concur in the heat transfer deterioration phenomenon. The AHFM model gives promising results with new sets of parameters in order to model the deterioration and the recovery phases because of its term related to the variance of temperature.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

In the current investigation, we performed large eddy simulation (LES) of turbulent heat transfer in circular ribbed-pipe flow in order to study the effects of periodically mounted square ribs on heat transfer characteristics. The ribs were implemented on a cylindrical coordinate system by using an immersed boundary method, and dynamic subgrid-scale models were used to model Reynolds stresses and turbulent heat flux terms. A constant and uniform wall heat flux was imposed on all the solid boundaries. The Reynolds number (Re) based on the bulk velocity and pipe diameter is 24,000, and Prandtl number is fixed at Pr = 0.71. The blockage ratio (BR) based on the pipe diameter and rib height is fixed with 0.0625, while the pitch ratio based on the rib interval and rib height is varied with 2, 4, 6, 8, 10, and 18. Since the pitch ratio is the key parameter that can change flow topology, we focus on its effects on the characteristics of turbulent heat transfer. Mean flow and temperature fields are presented in the form of streamlines and contours. How the surface roughness, manifested by the wall-mounted ribs, affects the mean streamwise-velocity profile was investigated by comparing the roughness function. Local heat transfer distributions between two neighboring ribs were obtained for the pitch ratios under consideration. The flow structures related to heat transfer enhancement were identified. Friction factors and mean heat transfer enhancement factors were calculated from the mean flow and temperature fields, respectively. Furthermore, the friction and heat-transfer correlations currently available in the literature for turbulent pipe flow with surface roughness were revisited and evaluated with the LES data. A simple Nusselt number correlation is also proposed for turbulent heat transfer in ribbed pipe flow.


Sign in / Sign up

Export Citation Format

Share Document