scholarly journals 2P2-A10 Dynamics and Control of a Space Robot Constrained by Tether

Author(s):  
N. Imami ◽  
S. Hokamoto
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Xiao-Feng Liu ◽  
Xiao-Yu Zhang ◽  
Pei-Ran Chen ◽  
Guo-Ping Cai

The problem of dynamics and control using a space robot to capture a noncooperative satellite is an important issue for on-orbit services. Inertia parameters of the satellite should be identified before capturing such that the robot can design an active controller to finish the capturing task. In this paper, a new identification scheme is proposed for parameter identification of a noncooperative satellite. In this scheme, the space robot is controlled to contact softly and then maintain contact with the noncooperative target firstly, then the variation of momentum of the target during the contact-maintaining phase is calculated using the control force and torque acting on the base of the space robot and the kinematic information of the space robot, and finally, the momentum-conservation-based identification method is used to estimate inertia parameters of the target. To realize soft contact and then maintain contact, a damping contact controller is designed in this paper, in which a mass-damping system is designed to control the contact between the robot and the target. Soft contact and then contact maintenance can be realized by utilizing the buffering characteristics of the mass-damping system. The effectiveness of the proposed identification scheme is verified through numerical simulations at the end of this paper. Simulation results indicate that the proposed scheme can achieve high-precision identification results.


Author(s):  
Yu Zhang-Wei ◽  
Liu Xiao-Feng ◽  
Li Hai-Quan ◽  
Cai Guo-Ping

With the development of space exploration, researches on space robot will cause more attentions. However, most existing researches about dynamics and control of space robot concern planar problem, and the effect of flexible panel on dynamics of the system is not considered. In this article, dynamics modeling and active control of a 6-DOF space robot with flexible panels are investigated. Dynamic model of the system is established based on the Jourdain's velocity variation principle and the single direction recursive construction method. The computed torque control method is used to design point-to-point active controller of the space robot. The validity of the dynamic model is verified through the comparison with ADAMS software; the effects of panel flexibility on the system performance and the active controller design are studied in detail. Simulation results indicate that the proposed model is effective to describe the dynamics of space robot; panel flexibility has large influence on the dynamic behavior of space robot; the designed controller can effectively make the robot reach a specified position and the elastic vibration of the panels may be suppressed simultaneously.


2011 ◽  
Vol 189-193 ◽  
pp. 2062-2066 ◽  
Author(s):  
Lei Liang ◽  
Tian Xi Liu ◽  
Wei Cheng ◽  
Yang Zhao

In the space robot self-assembling process, the assembling control becomes quite complicated and important for the nonlinear characteristics, which are caused by the dynamic coupling between the arm and the base, and the collision between the target and the assembling hole on the base. The dynamic model of the space robot with target is established firstly, then the Hertz model is introduced as the collision model between the docking link and the capturing cone, and the operational space control is applied to achieve the assembling operation control under the Cartesian space. Through simulating and analyzing the influence of the stiffness coefficient, the soft and hard behaviors during assembling are discovered, which would provide a basis for assembling control and parameter design. The results would have important academic value and engineering significance on space robot achieving on-orbit self-assembling.


2018 ◽  
Vol 151 ◽  
pp. 532-542 ◽  
Author(s):  
Shuang Wu ◽  
Fangli Mou ◽  
Qian Liu ◽  
Jing Cheng

2015 ◽  
Vol 111 ◽  
pp. 1-18 ◽  
Author(s):  
Xiao-Feng Liu ◽  
Hai-Quan Li ◽  
Yi-Jun Chen ◽  
Guo-Ping Cai

Sign in / Sign up

Export Citation Format

Share Document