Dynamics and control of a 6-DOF space robot with flexible panels

Author(s):  
Yu Zhang-Wei ◽  
Liu Xiao-Feng ◽  
Li Hai-Quan ◽  
Cai Guo-Ping

With the development of space exploration, researches on space robot will cause more attentions. However, most existing researches about dynamics and control of space robot concern planar problem, and the effect of flexible panel on dynamics of the system is not considered. In this article, dynamics modeling and active control of a 6-DOF space robot with flexible panels are investigated. Dynamic model of the system is established based on the Jourdain's velocity variation principle and the single direction recursive construction method. The computed torque control method is used to design point-to-point active controller of the space robot. The validity of the dynamic model is verified through the comparison with ADAMS software; the effects of panel flexibility on the system performance and the active controller design are studied in detail. Simulation results indicate that the proposed model is effective to describe the dynamics of space robot; panel flexibility has large influence on the dynamic behavior of space robot; the designed controller can effectively make the robot reach a specified position and the elastic vibration of the panels may be suppressed simultaneously.

2020 ◽  
Vol 20 (09) ◽  
pp. 2050103
Author(s):  
Yanfeng Du ◽  
Cong Wang

The dynamic modeling and coupling effect of a space robot are complex when the flexible manipulator and solar panels are considered. This paper investigates the dynamic coupling effect and control of a flexible space robot with flexible manipulators and flexible panels. The equations of motion are derived for the robot model both of the rigid-flexible type and flexible-flexible type. The flexible space robot dynamic model is verified by comparison with the results generated by the ADAMS software, for which good agreement has been obtained. The dynamic coupling matrix of the flexible space robot is derived based on the dynamic model. The effects of the central rigid body mass and the joints angle on the dynamic coupling are analyzed. A control method is proposed to manipulate the flexible space robot based on the system dynamic model. The multiple-impulse robust (MIR) input shaper is used to suppress the vibration of flexible structures in the proposed controller. Appropriate design parameter and frequency scaling factor are selected for the MIR input shaper to suppress the flexible vibration. The flexible space robot control is conducted to illustrate the effect of the proposed controller. It is shown that the proposed control method can realize the desired joints manipulation, while suppressing the vibration of the flexible manipulators and flexible panels.


Robotica ◽  
1998 ◽  
Vol 16 (6) ◽  
pp. 607-613 ◽  
Author(s):  
J. H. Chung ◽  
S. A. Velinsky

This paper concerns the modeling and control of a mobile manipulator which consists of a robotic arm mounted upon a mobile platform. The equations of motion are derived using the Lagrange-d'Alembert formulation for the nonholonomic model of the mobile manipulator. The dynamic model which considers slip of the platform's tires is developed using the Newton-Euler method and incorporates Dugoff's tire friction model. Then, the tracking problem is investigated by using a well known nonlinear control method for the nonholonomic model. The adverse effect of the wheel slip on the tracking of commanded motion is discussed in the simulation. For the dynamic model, a variable structure control approach is employed to minimize the harmful effect of the wheel slip on the tracking performance. The simulation results demonstrate the effectiveness of the proposed control algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Xiao-Feng Liu ◽  
Xiao-Yu Zhang ◽  
Pei-Ran Chen ◽  
Guo-Ping Cai

The problem of dynamics and control using a space robot to capture a noncooperative satellite is an important issue for on-orbit services. Inertia parameters of the satellite should be identified before capturing such that the robot can design an active controller to finish the capturing task. In this paper, a new identification scheme is proposed for parameter identification of a noncooperative satellite. In this scheme, the space robot is controlled to contact softly and then maintain contact with the noncooperative target firstly, then the variation of momentum of the target during the contact-maintaining phase is calculated using the control force and torque acting on the base of the space robot and the kinematic information of the space robot, and finally, the momentum-conservation-based identification method is used to estimate inertia parameters of the target. To realize soft contact and then maintain contact, a damping contact controller is designed in this paper, in which a mass-damping system is designed to control the contact between the robot and the target. Soft contact and then contact maintenance can be realized by utilizing the buffering characteristics of the mass-damping system. The effectiveness of the proposed identification scheme is verified through numerical simulations at the end of this paper. Simulation results indicate that the proposed scheme can achieve high-precision identification results.


Robotica ◽  
1988 ◽  
Vol 6 (1) ◽  
pp. 63-69 ◽  
Author(s):  
V. Potkonjak

SUMMARYThis paper discusses one problem of robot dynamics rarely mentioned in papers relevent to this field. It is the problem of torsional effects in torque transmissions (reducers, shafts, transmission chains, etc.). The problem is significant since oscillations can appear to be due to these effects. The complete dynamic model, which includes these effects, is derived and the possible simplifications considered. The position of feedback transducers is discussed since it appears as an important problem when it is intended to minimize the influence of these elastic vibrations. The discussion is based on eigenvalues and simulation results.


Author(s):  
So-Ryeok Oh ◽  
Ji-Chul Ryu ◽  
Sunil K. Agrawal

This paper presents a study of the dynamics and control of a helicopter carrying a payload through a cable-suspended robot. The helicopter can perform gross motion, while the cable suspended robot underneath the helicopter can modulate a platform in position and orientation. Due to the under-actuated nature of the helicopter, the operation of this dual system consisting of the helicopter and the cable robot is challenging. We propose here a two time scale control method, which makes it possible to control the helicopter and the cable robot independently. In addition, this method provides an effective estimation on the bound of the motion of the helicopter. Therefore, even in the case where the helicopter motion is unknown, the cable robot can be stabilized by implementing a robust controller. Simulation results of the dual system show that the proposed control approach is effective for such a helicopter-robot system.


2014 ◽  
Vol 621 ◽  
pp. 533-539
Author(s):  
Xi Zhang ◽  
Da Qi Wu

The frequence and complex of space exploration activeities makes the life of the spacecraft and on-orbit service technologies becoming research hotspot in recent years. But the limitation of non-renewable fuels makes exploration mission costly and maintenance difficult, so the free floating space robot has its unique advantages. Because the research level and control technology is not maturity, study on the free floating space robot control method is the key theory and technology which is the difficulty that our country now needs to overcome, also, the research is of great theoretical and practical significance. This paper introduct an experiment scara mechanical arm based on the free floating space robot project. Main research contents of this paper include the mechanical structure design, and combining with the characteristic of the free floating mechanical arm , it makes kinematics and dynamics modals of the mechanical arm system, additional, it conduct statics test and dynamic modal analysis, which is to make sure that the mechanical arm could satisfy needs and to study its dynamic characteristics.This topic focus on structure design and mathematical modeling of the mechanical arm, it makes the research of control method and trajectory planning no longer stay on the paper, and makes the research more authenticity and accuracy.


2005 ◽  
Vol 128 (1) ◽  
pp. 66-78 ◽  
Author(s):  
W. D. Zhu ◽  
Y. Chen

The vibratory energy of a moving cable in an elevator increases in general during upward movement. A control method is presented to dissipate the energy associated with the lateral vibration of the cable. A novel experimental method is developed to validate the theoretical predictions for the uncontrolled and controlled lateral responses of a moving cable in a high-rise elevator. This includes the design and fabrication of a scaled elevator, experimental setup, and development of measurement and parameter estimation techniques. Experimental results show good agreement with the theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document