scholarly journals 1A2-H02 Appearance based Place Recognition using Bag of Regions for Mobile Robots in Urban Environments(Localization and Mapping (1))

2013 ◽  
Vol 2013 (0) ◽  
pp. _1A2-H02_1-_1A2-H02_4
Author(s):  
Takato SAITO ◽  
Yoji KURODA
Sensors ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. 939 ◽  
Author(s):  
Safa Ouerghi ◽  
Rémi Boutteau ◽  
Xavier Savatier ◽  
Fethi Tlili

Author(s):  
Y. Yang ◽  
S. Song ◽  
C. Toth

Abstract. Place recognition or loop closure is a technique to recognize landmarks and/or scenes visited by a mobile sensing platform previously in an area. The technique is a key function for robustly practicing Simultaneous Localization and Mapping (SLAM) in any environment, including the global positioning system (GPS) denied environment by enabling to perform the global optimization to compensate the drift of dead-reckoning navigation systems. Place recognition in 3D point clouds is a challenging task which is traditionally handled with the aid of other sensors, such as camera and GPS. Unfortunately, visual place recognition techniques may be impacted by changes in illumination and texture, and GPS may perform poorly in urban areas. To mitigate this problem, state-of-art Convolutional Neural Networks (CNNs)-based 3D descriptors may be directly applied to 3D point clouds. In this work, we investigated the performance of different classification strategies utilizing a cutting-edge CNN-based 3D global descriptor (PointNetVLAD) for place recognition task on the Oxford RobotCar dataset.


2017 ◽  
Vol 36 (12) ◽  
pp. 1363-1386 ◽  
Author(s):  
Patrick McGarey ◽  
Kirk MacTavish ◽  
François Pomerleau ◽  
Timothy D Barfoot

Tethered mobile robots are useful for exploration in steep, rugged, and dangerous terrain. A tether can provide a robot with robust communications, power, and mechanical support, but also constrains motion. In cluttered environments, the tether will wrap around a number of intermediate ‘anchor points’, complicating navigation. We show that by measuring the length of tether deployed and the bearing to the most recent anchor point, we can formulate a tethered simultaneous localization and mapping (TSLAM) problem that allows us to estimate the pose of the robot and the positions of the anchor points, using only low-cost, nonvisual sensors. This information is used by the robot to safely return along an outgoing trajectory while avoiding tether entanglement. We are motivated by TSLAM as a building block to aid conventional, camera, and laser-based approaches to simultaneous localization and mapping (SLAM), which tend to fail in dark and or dusty environments. Unlike conventional range-bearing SLAM, the TSLAM problem must account for the fact that the tether-length measurements are a function of the robot’s pose and all the intermediate anchor-point positions. While this fact has implications on the sparsity that can be exploited in our method, we show that a solution to the TSLAM problem can still be found and formulate two approaches: (i) an online particle filter based on FastSLAM and (ii) an efficient, offline batch solution. We demonstrate that either method outperforms odometry alone, both in simulation and in experiments using our TReX (Tethered Robotic eXplorer) mobile robot operating in flat-indoor and steep-outdoor environments. For the indoor experiment, we compare each method using the same dataset with ground truth, showing that batch TSLAM outperforms particle-filter TSLAM in localization and mapping accuracy, owing to superior anchor-point detection, data association, and outlier rejection.


Sign in / Sign up

Export Citation Format

Share Document