411 A Study on Automatic Generation of Equations of Motion for Railway Vehicle : 2nd Report; Application to a Truck with Linkage Mechanism

2000 ◽  
Vol 2000 (0) ◽  
pp. 107-108
Author(s):  
Hajime SUZUKI ◽  
Katsuya TANIFUJI
1973 ◽  
Vol 95 (1) ◽  
pp. 28-35 ◽  
Author(s):  
E. Harry Law ◽  
R. S. Brand

The nonlinear equations of motion for a railway vehicle wheelset having curved wheel profiles and wheel-flange/rail contact are presented. The dependence of axle roll and vertical displacement on lateral displacement and yaw is formulated by two holonomic constraint equations. The method of Krylov-Bogoliubov is used to derive expressions for the amplitudes of stationary oscillations. A perturbation analysis is then used to derive conditions for the stability characteristics of the stationary oscillations. The expressions for the amplitude and the stability conditions are shown to have a simple geometrical interpretation which facilitates the evaluation of the effects of design parameters on the motion. It is shown that flange clearance and the nonlinear variation of axle roll with lateral displacement significantly influence the motion of the wheelset. Stationary oscillations may occur at forward speeds both below and above the critical speed at which a linear analysis predicts the onset of instability.


Author(s):  
Zhang Xianmin ◽  
Chao Changjian

Abstract On the basis of the complex mode theory and the equations of motion of the flexible mechanisms developed in part 1, a hybrid independent modal controller is presented, which is composed of state feedback and disturbance feed-forward control laws. As an illustrative example, the strategy is used to control the elastic vibration response of a four-bar linkage mechanism. The imitative computational result shows that the vibration is efficiently suppressed.


2014 ◽  
Vol 611 ◽  
pp. 40-45
Author(s):  
Darina Hroncová ◽  
Jozef Filas

The paper describes an algorithm for automatic compilation of equations of motion. Lagrange equations of the second kind and the transformation matrices of basic movements are used by this algorithm. This approach is useful for computer simulation of open kinematic chains with any number of degrees of freedom as well as any combination of bonds.


2013 ◽  
Vol 392 ◽  
pp. 156-160
Author(s):  
Ju Seok Kang

Multibody dynamics analysis is advantageous in that it uses real dimensions and design parameters. In this study, the stability analysis of a railway vehicle based on multibody dynamics analysis is presented. The equations for the contact points and contact forces between the wheel and the rail are derived using a wheelset model. The dynamics equations of the wheelset are combined with the dynamics equations of the other parts of the railway vehicle, which are obtained by general multibody dynamics analysis. The equations of motion of the railway vehicle are linearized by using the perturbation method. The eigenvalues of these linear dynamics equations are calculated and the critical speed is found.


1974 ◽  
Vol 96 (4) ◽  
pp. 1168-1176 ◽  
Author(s):  
E. H. Law

The nonlinear equations of motion for a railway vehicle wheelset having profiled wheels and contact of the wheel flange with flexible rails are presented. The effects of spin creep and gyroscopic terms are included. The rails are considered to have random lateral irregularities which are described by prescribed power spectra. The equations of motion are integrated numerically and the effects on the dynamic response of quantities such as speed, track roughness, wheel wear, flange clearance, and lateral stiffness of the rails are investigated.


2020 ◽  
Vol 896 ◽  
pp. 67-74
Author(s):  
Dan B. Marghitu ◽  
Edmon Perkins

The dynamics of a slider-crank mechanism is developed using Kane's equations of motion. The motor torque is a function of the derivative of the generalized coordinate. The nonlinear equations of motion are solved using MATLAB numerical techniques. The sample entropy is calculated for different angular velocities of the crank.


Sign in / Sign up

Export Citation Format

Share Document