122 Finite Element Analysis on the Dent Size and Plastic Deformation Area Generated by Surface Modification of Stainless Steel

2011 ◽  
Vol 2011.46 (0) ◽  
pp. 48-49
Author(s):  
Shinya KANOU ◽  
Masaaki NISHIKAWA ◽  
Hitoshi SOYAMA
Author(s):  
James K. Wilkins

A project has been conducted to verify a finite element analysis procedure for studying the nonlinear behavior of 90°, stainless steel, 4 inch schedule 10, butt welding elbows. Two displacement controlled monotonic in-plane tests were conducted, one closing and one opening, and the loads, displacements, and strains at several locations were recorded. Stacked 90° tee rosette gages were used in both tests because of their ability to measure strain over a small area. ANSYS shell element 181 was used in the FEA reconciliations. The FEA models incorporated detailed geometric measurements of the specimens, including the welds, and material stress-strain data obtained from the attached straight piping. Initially, a mesh consisting of sixteen elements arrayed in 8 rings was used to analyze the elbow. The load-displacement correlation was quite good using this mesh, but the strain reconciliation was not. Analysis of the FEA results indicated that the axial and hoop strain gradients across the mid-section of the elbow were very high. In order to generate better strain correlations, the elbow mesh was refined in the mid-section of the elbow to include 48 elements per ring and an additional six rings, effectively increasing the element density by nine times. Using the refined mesh produced much better correlations with the strain data.


Author(s):  
Valentin Mereuta

Abstract: In this work the 3D model of the camshaft was done using Autodesk Inventor version 2021 with the literature data and finite element analysis is performed by applying restrictions and loads conditions, first by the absence of the torque and then by applying the torque. Three materials were analyzed in both situations: Cast Iron, Stainless Steel AISI 202 and Steel Alloy. Following the comparative study for the three materials, it can be specified the importance of the material for the construction of the camshaft. Keywords: Camshaft, Static analysis, Autodesk Inventor


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987456 ◽  
Author(s):  
Dyi-Cheng Chen ◽  
Li Cheng-Yu ◽  
Yu-Yu Lai

With the advancement of technology, aiming for achieving a greater lightness and smaller size of 3C products, parts processing technology not only needs to explore the basic scientific theory of materials but also needs to discuss the process of deep drawing numerical and the plastic deformation. This study is based on the square shape of the deep drawing numerical simulation, and aluminum alloy plastic flow stress was input into the finite element method for simulation of plastic deformation in the aluminum alloy friction, mold clamping force, and frequency, as well as amplitude in the influence of forming mechanism and the drawing ratio of aluminum alloy. Finite element analysis software has the function of grid automatic rebuild, which can rebuild the broken grid in the analysis into a complete grid shape, which can avoid the divergence caused by numerical calculation in the analysis process. The greater the obtained error value, the best plastic parameters can be found.


2000 ◽  
Vol 13 (02) ◽  
pp. 65-72 ◽  
Author(s):  
R. Shahar

SummaryThe use of acrylic connecting bars in external fixators has become widespread in veterinary orthopaedics. One of the main advantages of an acrylic connecting bar is the ability to contour it into a curved shape. This allows the surgeon to place the transcortical pins according to safety and convenience considerations, without being bound by the requirement of the standard stainless steel connecting bar, that all transcortical pins be in the same plane.The purpose of this study was to evaluate the stiffness of unilateral and bilateral medium-sized external fixator frames with different curvatures of acrylic connecting bars. Finite element analysis was used to model the various frames and obtain their stiffness under four types of load: Axial compression, four-point medio-lateral bending, fourpoint antero-posterior bending and torsion. The analysis also provided the maximal pin stresses occurring in each frame for each loading condition.Based on the results of this study, curvatures of acrylic connecting bars of up to a maximal angular difference between pins of 25° will result in very similar stiffness and maximal pin stresses to those of the equivalent, uniplanar stainless steel system. In both unilateral and bilateral systems the stiffness decreases slightly as angulation increases for axial compression and medio-lateral bending, increases slightly for torsion and increases substantially for antero-posterior bending.External fixator systems with curved acrylic connecting bars are commonly used in veterinary orthopaedics. This paper evaluates the biomechanical performance of such systems by applying the finite element analysis method. It shows that external fixators with curved acrylic connecting bars exhibit stiffness and maximal pin stresses which are similar to those of the standard stainless steel system.


Sign in / Sign up

Export Citation Format

Share Document