1211 Characteristic Test of Secondary Suspension of Railway Vehicle under Large Displacement Condition for an Earthquake

2011 ◽  
Vol 2011.20 (0) ◽  
pp. 107-110
Author(s):  
Kohei IIDA ◽  
Mitsugi SUZUKI ◽  
Takayuki TOHTAKE ◽  
Takefumi MIYAMOTO ◽  
Yukio NISHIYAMA
2007 ◽  
Vol 2007.16 (0) ◽  
pp. 219-222 ◽  
Author(s):  
Yoshiki SUGAHARA ◽  
Akihito KAZATO ◽  
Takahiro TOMIOKA ◽  
Reiko KOGANEI ◽  
Mitsuji SAMPEI

Author(s):  
Sunil Kumar Sharma ◽  
Anil Kumar

In a railway vehicle, vibrations are generated due to the interaction between wheel and track. To evaluate the effect of vibrations on the ride quality and comfort of a passenger vehicle, the Sperling's ride index method is frequently adopted. This paper focuses on the feasibility of improving the ride quality and comfort of railway vehicles using semiactive secondary suspension based on magnetorheological fluid dampers. Equations of vertical, pitch and roll motions of car body and bogies are developed for an existing rail vehicle. Moreover, nonlinear stiffness and damping functions of passive suspension system are extracted from experimental data. In view of improvement in the ride quality and comfort of the rail vehicle, a magnetorheological damper is integrated in the secondary vertical suspension system. Parameters of the magnetorheological damper depend on current, amplitude and frequency of excitations. Three semi-active suspension strategies with magnetorheological damper are analysed at different running speeds and for periodic track irregularity. The performance indices calculated at different semi-active strategies are juxtaposed with the nonlinear passive suspension system. Simulation results establish that magnetorheological damper strategies in the secondary suspension system of railway vehicles reduce the vertical vibrations to a great extent compared to the existing passive system. Moreover, they lead to improved ride quality and passenger comfort.


Author(s):  
Yu Pan ◽  
Sijing Guo ◽  
Ruijin Jiang ◽  
Yong Xu ◽  
Zhiwen Tu ◽  
...  

Railway transportation has been increasingly significant for modern society in recent decades. To enable smart technology, such as health monitoring and electromagnetic braking for railway vehicles, a mechanical motion rectifier (MMR) based energy harvesting shock absorber (EHSA) has been proposed and proved to be capable of scavenging energy from the train suspension vibration. When installed on the train, MMR-EHSA works as a tunable damper in parallel with an inerter. This new suspension form brings great potential for further optimization of suspension dynamics but is rarely researched before. In this paper, the influence of the energy harvesting shock absorber (EHSA) on the railway vehicle dynamics performance is studied. A ten-degree of freedom vehicle model is established, with MMR shock absorber’s nonlinearity taken into account, with the purpose to analyze the influence of the EHSA on the ride comfort and wheel-rail vertical forces. Simulations are conducted by replacing the traditional shock absorber from train secondary suspension with the EHSA. Results show that EHSA could respectively harvest 180 W and 40 W average power at AAR 6th and 5th rail irregularity. In addition, compared with the traditional shock absorber, the MMR-EHSA can provide a higher ride comfort for passengers and slightly reduce the wheel-rail contact force.


2017 ◽  
Vol 7 (2) ◽  
pp. 152 ◽  
Author(s):  
Jun-Ho Yoon ◽  
Dongwook Kim ◽  
No-Cheol Park ◽  
Young-Pil Park

1970 ◽  
Vol 39 (2) ◽  
pp. 86-94 ◽  
Author(s):  
Rajib Ul Alam Uzzal ◽  
Waiz Ahmed ◽  
Subhash Rakheja

This paper presents the responses of the railway vehicle and track components in terms of contact forces and displacements. The considered vehicle model is a five-DOF pitch-plane lumped parameter quarter car model supported on two-dimensional track systems comprising three layers. The car body is linked with the vehicle bogie through secondary suspension springs and damper elements, which is further linked to the wheels through primary suspension springs and damper elements. In modeling of the track, the rail is considered as an infinitely long beam discretely supported by a series of springs, dampers and masses representing the elasticity and damping effects of the rail pads, ballasts, and subgrades respectively. The non-linear Hertzian contact theory is employed to accomplish the dynamic interactions between the lumped mass vehicle and the continuous rail. The drastic effect of one wheel flat to the other perfect wheel-rail contact point is also taken into account. Keywords: Wheel flat, pitch-plane vehicle, wheel-rail impact, component force. doi:10.3329/jme.v39i2.1851 Journal of Mechanical Engineering, Vol. ME39, No. 2, Dec. 2008 86-94


Author(s):  
Dan Baiasu ◽  
Gheorghe Ghita ◽  
Ioan Sebesan

The paper presents the opportunity of using a magneto-rheological damper to control the lateral oscillations of a passenger railway vehicle to increase its comfort and speed features. The lateral dynamics of the vehicle is simulated using a multibody model with 17 degrees of freedom considering the lateral, yawing and rolling oscillations. The equations describing the model are integrated by the authors using original software. The mathematical model considers the geometrical nonlinearities of the wheel-track contact. The nonlinear stability of the vehicle running on tangent tracks with irregularities is assessed and it is shown the influence of the construction parameters of the suspensions on the vehicle’s performance. A magneto-rheological device with sequential damping based on balance logic control strategy is introduced in the secondary suspension of the vehicle to reduce the lateral accelerations generated by the track’s irregularities. The system’s response in terms of accelerations is compared for both passive and semi-active cases. It is shown that the magneto-rheological semi-active suspension improves the safety and the comfort of the railway vehicle.


Sign in / Sign up

Export Citation Format

Share Document