scholarly journals Studies on Fatigue Fracture Toughness of Composite Materials : Part 1, Glass Fiber Reinforced Polycarbonate of Lower Fiber Contents

1975 ◽  
Vol 41 (352) ◽  
pp. 3332-3340
Author(s):  
Megumu SUZUKI ◽  
Masaharu IWAMOTO ◽  
Hiroshi UEDA
2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hardik Bhanushali ◽  
Philip D. Bradford

This investigation describes the design, fabrication, and testing of woven glass fiber reinforced epoxy matrix laminates with aligned CNT sheets integrated between plies in order to improve the matrix dominated through thickness properties such as the interlaminar fracture toughness at ply interfaces. Using aligned CNT sheets allows for a concentration of millimeter long CNTs at the most likely point of laminate failure. Mode I and Mode II interlaminar fracture toughness of various CNT modified samples were investigated using double cantilever beam (DCB) and end notched flexure (ENF) experiments, respectively. Short beam strength (SBS) and in-plane tensile properties of the CNT modified samples were also investigated. Moderate improvement was observed in Mode I and Mode II fracture toughness at crack initiation when aligned CNT sheets with a basis weight of 0.354 g/m2were used to modify the ply interface. No compromise in the in-plane mechanical properties of the laminate was observed and very little improvement was observed in the shear related short beam strength of the CNT modified laminates as compared to the control samples. Integration of aligned CNT sheets into the composite laminate imparted in-plane and through thickness electrical properties into the nonconductive glass fiber reinforced epoxy composite laminates.


2013 ◽  
Vol 750 ◽  
pp. 142-146 ◽  
Author(s):  
Atsushi Hosoi ◽  
Yuhei Yamaguchi ◽  
Yang Ju ◽  
Yasumoto Sato ◽  
Tsunaji Kitayama

A technique to detect delamination in composite materials by noncontact, rapid and high sensitive microwave reflectometry with a focusing mirror sensor was proposed. The focusing mirror sensor, which has high sensitivity and resolution, is expected to detect delamination sensitively. In this paper, the ability of microwave inspection to detect delamination in glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) was verified. As the results, the existences of 100 μm thick delamination in 3 mm thick GFRP laminate and 2 mm thick CFRP laminate were detected.


Sign in / Sign up

Export Citation Format

Share Document