scholarly journals On the strain functions and complex stress functions in the two dimensional theory of elasticity.

1987 ◽  
Vol 53 (488) ◽  
pp. 816-819
Author(s):  
Hisao HASEGAWA
1986 ◽  
Vol 53 (3) ◽  
pp. 500-504 ◽  
Author(s):  
R. W. Zimmerman

Muskhelishvili-Kolosov complex stress functions are used to find the stresses and displacements around two-dimensional cavities under plane strain or plane stress. The boundary conditions considered are either uniform pressure at the cavity surface with vanishing stresses at infinity, or a traction-free cavity surface with uniform biaxial compression at infinity. A closed-form solution is obtained for the case where the mapping function from the interior of the unit circle to the region outside of the cavity has a finite number of terms. The area change of the cavity due to hydrostatic compression at infinity is examined for a variety of shapes, and is found to correlate closely with the square of the perimeter of the hole.


Author(s):  
Toshiyuki Sawa ◽  
Seiichi Hamamoto

In designing a bolted joint, it is important to examine the interface stress distribution (clamping effect) and to estimate the load factor, that is the ratio of an additional axial bolt force to a load. In order to improve the clamping effect raised faces of the interface have been used. But these interfaces in bolted joints have been designed empirically and the theoretical grounds are not made clear. In the present paper, in the case of T-shaped flanges with raised faces the clamping effect is analyzed by a two-dimensional theory of elasticity and the point matching method. Then, the load factor is analyzed. Moreover, with the application of the load a bending moment is occurred in bolts and the stress is added due to this bending moment. The bending moment in the bolt is also analyzed. In order to verify these analyses experiments to measure the load factor and the maximum bolt stress were carried out. The values of the load factor and the load when interface start to separate are compared with those of the joints with flat-faces. The analytical results are in fairly good agreements with the experimental ones.


1973 ◽  
Vol 95 (4) ◽  
pp. 1159-1163 ◽  
Author(s):  
C. N. Baronet ◽  
G. V. Tordion

Using the two-dimensional theory of elasticity and an appropriate transform function, the stress distribution in a gear tooth acted on by a concentrated load has been obtained. Computations were carried out for the 20 and 25-deg pressure angle, standard full-depth system, for numbers of teeth ranging from 20 to 150. The intensities of the maximum static surface stresses along the root fillets are given for different loading positions on the tooth profile. Some of the results are compared with others found in the literature.


1992 ◽  
Vol 3 (1) ◽  
pp. 21-30 ◽  
Author(s):  
A. B. Movchan

Integral characteristics, such as elastic polarization matrices of elastic inclusions and cavities, are described. The matrix of elastic polarization of a finite cavity is constructed in the case of the two-dimensional Lamé operator under the assumption that the geometry of the domain occupied by the cavity is defined by a conformal mapping from the unit disk. Examples and applications of these integral characteristics in the theory of cracks are considered.


Sign in / Sign up

Export Citation Format

Share Document