scholarly journals Effect of Fluid Viscosity, Permeability of Rock and Crack Interfacial Stiffness on Dynamic Response of a Geothermal Reservoir Crack. Two-Dimensional Crack Model.

1998 ◽  
Vol 64 (622) ◽  
pp. 1583-1588 ◽  
Author(s):  
Shin ITO ◽  
Kazuo HAYASHI
Author(s):  
Parviz Ghadimi ◽  
Sasan Tavakoli ◽  
Abbas Dashtimanesh ◽  
Pouria Taghikhani

In this article, a mathematical model is presented for simulation of the coupled roll and heave motions of the asymmetric impact of a two-dimensional wedge body. This model is developed based on the added mass theory and momentum variation. To this end, new formulations are introduced which are related to the added mass caused by heave and roll motions of the wedge. These relations are developed by including the asymmetrical effects and roll speed. In addition, by considering the roll speed, a particular method is presented for the time derivative of half-wetted beam of an asymmetric wedge. Furthermore, two equations are derived for the roll and heave motions in which damping terms appear. Validity of the proposed method is verified by comparing the predicted results against available experimental data in two conditions of roll motion and no roll motion. Favorable agreement is observed between the predicted results and experimental data. The pressure and hydrodynamic load are computed, and the differences between the results associated with the considered conditions are explored. Subsequently, the effects of different physical parameters including deadrise angle, initial roll angle, and initial velocity on the dynamic response of a two-dimensional wedge section are investigated. Ultimately, time histories of hydrodynamic coefficients are determined in order to provide a better understanding of the derived equations.


2001 ◽  
Vol 442 ◽  
pp. 387-409 ◽  
Author(s):  
JEAN-MARC CHOMAZ

Nearly two decades ago, Couder (1981) and Gharib & Derango (1989) used soap films to perform classical hydrodynamics experiments on two-dimensional flows. Recently soap films have received renewed interest and experimental investigations published in the past few years call for a proper analysis of soap film dynamics. In the present paper, we derive the leading-order approximation for the dynamics of a flat soap film under the sole assumption that the typical length scale of the flow parallel to the film surface is large compared to the film thickness. The evolution equations governing the leading-order film thickness, two-dimensional velocities (locally averaged across the film thickness), average surfactant concentration in the interstitial liquid, and surface surfactant concentration are given and compared to similar results from the literature. Then we show that a sufficient condition for the film velocity distribution to comply with the Navier–Stokes equations is that the typical flow velocity be small compared to the Marangoni elastic wave velocity. In that case the thickness variations are slaved to the velocity field in a very specific way that seems consistent with recent experimental observations. When fluid velocities are of the order of the elastic wave speed, we show that the dynamics are generally very specific to a soap film except if the fluid viscosity and the surfactant solubility are neglected. In that case, the compressible Euler equations are recovered and the soap film behaves like a two-dimensional gas with an unusual ratio of specific heat capacities equal to unity.


Sign in / Sign up

Export Citation Format

Share Document