scholarly journals Numerical Study on Collapse Behavior of Plate Subjected to Axial Compression

2008 ◽  
Vol 74 (737) ◽  
pp. 45-52
Author(s):  
Shingo OZAKI ◽  
Dai-Heng CHEN ◽  
Masahito SHINOHARA
Author(s):  
Ling Zhu ◽  
Jieling Kong ◽  
Qingyang Liu ◽  
Han Yang ◽  
Bin Wang

The tubular bracing members of offshore structures may sustain collision damages from the supply ships, which lead to the deterioration of the load carrying capacity of tubular bracing members. This paper presents a numerical simulation of the ultimate strength of damaged tubular bracing members under axial compression with the nonlinear finite element code ABAQUS, based on previous experimental investigations. Parametric studies are conducted to investigate the load capacity of damaged tubular bracing members, by considering the effects of diameter (D), wall thickness (H), pipe length (L) and the damage positions on the ultimate strength of tubular members. It is found that lateral damage can cause great reduction of the axial load capacity of tubular members. In addition, an approximate equation to predict the ultimate strength of tubular members based on the given damage depth is proposed.


2007 ◽  
Vol 2007 (0) ◽  
pp. 520-521
Author(s):  
Hiroshi KUWAKO ◽  
Dai-Heng CHEN ◽  
Shingo OZAKI

Author(s):  
Rigoberto Burgueño ◽  
Nan Hu ◽  
Nizar Lajnef

Elastic instability, long considered mainly as a failure limit state or a safety guard against ultimate failure is gaining increased interest due to the development of active and controllable structures, and the growth in computational power. Mode jumping, or snap-through, during the postbuckling response leads to sudden and high-rate deformations due to generally smaller changes in the controlling load or displacement input to the system. A paradigm shift is thus emerging in using the unstable response range of slender structures for purposes that are rapidly increasing and diversifying, including applications such as energy harvesting, frequency tuning, sensing and actuation. This paper presents a finite element based numerical study on controlling the postbuckling behavior of fiber reinforced polymer cylindrical shells under axial compression. Considered variables in the numerical analyses include: the ply orientation and laminate stacking sequence; the material distribution on the shell surface (stiffness distribution); and the anisotropic coupling effects. Preliminary results suggest that the static and dynamic response of unstable mode branch switching during postbuckling can be fully characterized, and that their number and occurrence can be potentially tailored. Use of the observed behavior for energy harvesting and other sensing and actuation applications will be presented in future studies.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
P. Khazaeinejad ◽  
M. M. Najafizadeh ◽  
J. Jenabi ◽  
M. R. Isvandzibaei

The stability problem of a circular cylindrical shell composed of functionally graded materials with elasticity modulus varying continuously in the thickness direction under combined external pressure and axial compression loads is studied in this paper. The formulation is based on the first-order shear deformation theory. A load interaction parameter is defined to express the combination of applied axial compression and external pressure. The stability equations are derived by the adjacent equilibrium criterion method. These equations are employed to analyze the buckling behavior and obtain the critical buckling loads. A detailed numerical study is carried out to bring out the effects of the power law index of functionally graded material, load interaction parameter, thickness ratio, and aspect ratio on the critical buckling loads. The validity of the present analysis was checked by comparing the present results with those results available in literature.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 1315-1324
Author(s):  
Maryam Poursharifi ◽  
Karim Abedi ◽  
Mohammadreza Chenaghloua

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xingyou Yao

The objective of this paper is to investigate the buckling behavior and design method of the ultimate strength for the cold-formed steel (CFS) built-up I-sectional columns under axial compression which failed in distortional buckling and interactive buckling. A total of 56 CFS built-up I-sectional columns subjected to axial compression were tested, and the different buckling modes and ultimate strengths were analyzed in detail by varying the thickness, the length, the spacing of screws, the end fastener group, and the cross-sectional dimensions of CFS built-up I-sectional columns. It was shown in the test that noticeable interaction of local and distortional buckling or interaction of local, distortional, and global buckling was observed for the built-up I-sectional columns with different lengths and cross-sectional dimensions. A finite element model (FEM) was developed and validated with experimental results. A further parametric study has been conducted including different cross sections and slenderness ratios for the built-up I-sectional columns. The load-carrying capacities obtained from the experimental and numerical study were used to investigate the feasibility of the current direct strength method (DSM) when DSM was applied to CFS built-up I-sectional columns. The comparison results showed that the current DSM is not safe for CFS built-up columns failed in distortional buckling and interactive buckling. Therefore, the improved design formulas were proposed, and their accuracy was verified by using finite element analysis (FEA) and experimental results of CFS built-up I-sectional columns subjected to axial compression.


Sign in / Sign up

Export Citation Format

Share Document