scholarly journals Stability of boundary layers along a rotating disk.

1985 ◽  
Vol 51 (470) ◽  
pp. 3344-3347 ◽  
Author(s):  
Takashi WATANABE
1994 ◽  
Vol 281 ◽  
pp. 119-135 ◽  
Author(s):  
M. Kilic ◽  
X. Gan ◽  
J. M. Owen

This paper describes a combined computational and experimental study of the flow between contra-rotating disks for – 1 ≤ Γ ≤ 0 and Reϕ = 105, where Γ is the ratio of the speed of the slower disk to that of the faster one and Reϕ is the rotational Reynolds number of the faster disk. For Γ = 0, the rotor-stator case, laminar and turbulent computations and experimental measurements show that laminar Batchelor-type flow occurs: there is radial outflow in a boundary layer on the rotating disk, inflow on the stationary disk and a rotating core of fluid between. For Γ = – 1, the laminar computations produce Batchelor-type flow: there is radial outflow on both disks and inflow in a free shear layer in the mid-plane, on either side of which is a rotating core of fluid. The turbulent computations and the velocity measurements for Γ = – 1 show Stewartson-type flow: radial outflow occurs in laminar boundary layers on the disks and inflow occurs in a non-rotating turbulent core between the boundary layers. For intermediate values of Γ, transition from Batchelor-type flow to Stewartson-type flow is associated with a two-cell structure, the two-cells being separated by a streamline that stagnates on the slower disk; Batchelor-type flow occurs radially outward of the stagnation point and Stewartson-type flow radially inward. The turbulent computations are mainly in good agreement with the measured velocities for Γ = 0 and Γ = – 1, where either Batchelor-type flow or Stewartson-type flow occurs; there is less good agreement at intermediate values of Γ, particularly for Γ = – 0.4 where the double transition of Batchelor-type flow to Stewartson-type flow and laminar to turbulent flow occurs in the two-cell structure.


1974 ◽  
Vol 41 (1) ◽  
pp. 45-50 ◽  
Author(s):  
E. Bilgen ◽  
P. Vasseur

The turbulent flow characteristics of non-Newtonian dilute polymer solutions around an enclosed rotating disk have been studied both theoretically and experimentally. In the theoretical analysis, the momentum equations of the boundary layers on both rotating disk and housing have been solved numerically using appropriate velocity profiles. It is shown that the theoretical predictions for minimum resistance conditions are in good agreement with the experimental results of this study and with those in the literature.


2000 ◽  
Vol 402 ◽  
pp. 225-253 ◽  
Author(s):  
CHRISTOPHER J. ELKINS ◽  
JOHN K. EATON

Measurements in the turbulent momentum and thermal boundary layers on a rotating disk with a uniform heat flux surface are described for Reynolds numbers up to 106. Measurements include mean velocities and temperatures, all six Reynolds stresses, turbulent temperature fluctuations, and three turbulent heat fluxes. The mean velocity profiles have no wake region, but the mean temperature profiles do. The turbulent temperature fluctuations have a large peak in the outer layer, and there is a third turbulent heat flux in the cross-flow direction. Correlation coefficients and structure parameters are not constant across the boundary layer as they are in two-dimensional boundary layers (2DBLs), and their values are lower. The turbulent Prandtl number agrees with 2DBL values in the lower part of the outer region but is reduced from the 2DBL values higher in the boundary layer. In the outer region of the boundary layer, the transport processes differ significantly from what is observed in two-dimensional turbulent boundary layers: ejections dominate the transport of momentum while both ejections and sweeps contribute to the transport of the passive scalar.


AIAA Journal ◽  
1975 ◽  
Vol 13 (6) ◽  
pp. 829-832 ◽  
Author(s):  
TUNCER CEBECI ◽  
DOUGLAS E. ABBOTT

2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Roger Debuchy ◽  
Fadi Abdel Nour ◽  
Gérard Bois

In the most part of an enclosed rotor-stator system with separated boundary layers, the flow structure is characterized by a central core rotating as a solid body with a constant core-swirl ratio. This behavior is not always observed in an isolated rotor-stator cavity, i.e., without any centripetal or centrifugal throughflow, opened to the atmosphere at the periphery: Recent works have brought to evidence an increasing level of the core-swirl ratio from the periphery to the axis, as in the case of a rotor-stator with superposed centripetal flow. The present work is based on an asymptotical approach in order to provide a better understanding of this process. Assuming that the boundary layers behave as on a single rotating disk in a stationary fluid on the rotor side, and on a stationary disk in a rotating fluid on the stator side, new analytical relations are obtained for the core-swirl ratio, the static pressure on the stator, and also the total pressure at midheight of the cavity. An experimental study is performed: Detailed measurements provide data for several values of the significant dimensionless parameters: 1.14≤10−6×Re≤1.96, 0.05≤G≤0.10, and 0.07≤104×Ek≤2.65. The analysis of the results shows a good agreement between the theoretical solution and the experimental results. The analytical model can be used to provide a better understanding of the flow features. In addition, radial distributions of both core-swirl ratio, dimensionless static pressure on the stator, as well as dimensionless total pressure at midheight of the cavity, which are of interest to the designers, can be computed with an acceptable accuracy knowing the levels of the preswirl coefficient Kp and the solid body rotation swirl coefficient KB.


1996 ◽  
Vol 317 ◽  
pp. 129-154 ◽  
Author(s):  
Nobutake Itoh

A new instability of the centrifugal type due to the curvature of external streamlines was theoretically predicted in a recent study on boundary layers along a swept wing. It is, however, not clear how this instability relates to already-known instability phenomena in various three-dimensional flows. So the basic idea developed in the analysis of boundary layers is applied to the simpler problems of the flow on a rotating disk and along the leading edge of a yawed circular cylinder, and the resulting eigenvalue problems are numerically solved to show multiple stability characteristics of the flows. Computational results confirm that the streamline-curvature instability does appear in the rotating-disk flow and that it is in fact identical with the instability called the ‘parallel’ or ‘type 2’ mode in the atmospheric literature. This instability is also found to occur in the steady flow near the attachment line and to give the lowest values of the critical Reynolds number except for a very narrow region close to the attachment line, where the viscous and cross-flow instabilities are dominant. These facts provide evidence to show that the same mode of instability as the classical one observed in rotating flows can appear in general three-dimensional boundary layers without rotation.


Sign in / Sign up

Export Citation Format

Share Document