A correlation of conditions at minimum heat flux point for saturated boiling. 2nd report.

1985 ◽  
Vol 51 (470) ◽  
pp. 3404-3410 ◽  
Author(s):  
Shigefumi NISHIO
1969 ◽  
Vol 91 (3) ◽  
pp. 315-328 ◽  
Author(s):  
I. Shai ◽  
W. M. Rohsenow

Experimental data for sodium boiling on horizontal surfaces containing artificial cavities at heat fluxes of 20,000 to 300,000 Btu/ft2 hr and pressures between 40 to 106 mm Hg were obtained. Observations are made for stable boiling, unstable boiling and “bumping.” Some recorded temperature variations in the solid close to the nucleating cavity are presented. It is suggested that for liquid metals the time for bubble growth and departure is a very small fraction of the total bubble cycle, hence the delay time during which a thermal layer grows is the most significant part of the process. On this basis the transient conduction heat transfer is solved for a periodic process, and the period time is found to be a function of the degree of superheat, the heat flux and the liquid thermal properties. A simplified model for stability of nucleate pool boiling of liquid metals is postulated from which the minimum heat flux for stable boiling can be found as a function of liquid-solid properties, liquid pressure, the degree of superheat, and the cavity radius and depth. At relatively low heat fluxes, convection currents have significant effects on the period time of bubble formation. An empirical correlation is proposed, which takes into account the convection effects, to match the experimental results.


Author(s):  
A. E. Bergles

During the past 20 years, there has been intense worldwide interest in microchannel heat exchangers, particularly for cooling of microelectronic components. Saturated boiling of the coolant is usually indicated in order to accommodate high heat fluxes and to have uniformity of temperature. However, boiling is accompanied by several instabilities, the most severe of which can sharply limit the maximum, or critical, heat flux. These stability phenomena are reviewed, and recent studies will be discussed. Elevation of the critical heat flux will be discussed within the context of heat transfer enhancement. Means to improve the stability of boiling and the enhancement of boiling heat transfer, in general, are discussed.


2018 ◽  
Vol 2018 (0) ◽  
pp. 0013
Author(s):  
Mituyoshi Shimaoka ◽  
Hiroshi Yoshida ◽  
Fumiaki Ikuta ◽  
Nakamura Shigeto

2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 617-627
Author(s):  
Jie Chen ◽  
Weihua Cai ◽  
Shulei Li ◽  
Yan Ren ◽  
Hongqiang Ma ◽  
...  

Plate-fin heat exchanger with rectangular minichannels, as a type of high-perfor- mance compact heat exchangers, has been widely used in liquefied natural gas field. However, the studies on saturated boiling flow and heat transfer for mixture refrigerant in plate-fin heat exchanger have been scarcely explored, which are helpful for designing more effective plate-fin heat exchanger using in liquefied natural gas field. Therefore, in this paper, the characteristics of saturated boiling flow and heat transfer for mixture refrigerant in rectangular minichannels of plate-fin heat exchanger were studied numerally based on validated model. Then, the effect of different parameters (vapor quality, mass flux, and heat flux) on heat transfer coefficient and frictional pressure drop were discussed. The results indicated that the boiling heat transfer coefficient and pressure drop are mainly influenced by quality and mass flux while heat flux has little influence on them. This is due to the fact that the main boiling mechanisms were forced convective boiling and the evaporation of dispersed liquid phase while nucleate boiling is slight.


Author(s):  
Yasir M. Shariff

Flow in three horizontal channels for subcooled and saturated boiling characteristics are reported in this study. An experimental setup composed of heating elements provided heat flux variations on the channels. The heat transfer coefficient was found to be dependent on both the heat flux as well as mass flux levels. Results show that micro-coil inserts enhanced the heat transfer performance over that in smooth channels by 25% as compared to correlations for wire-coil inserts and 30% as compared to correlation for convective boiling process.


1980 ◽  
Vol 102 (2) ◽  
pp. 335-341 ◽  
Author(s):  
F. S. Gunnerson ◽  
A. W. Cronenberg

An analytical method is presented for predicting the minimum heater temperature and the minimum heat flux at the onset of film boiling for spherical and flat plate heaters in saturated and subcooled liquids. Consideration is given to a variety of factors known to affect the minimum film boiling point, including transient liquid-heater contact, interfacial wettability, heater geometry, and liquid subcooling. The theoretical correlations developed are the first known predictions for spherical geometries. A comparison of theory with experimental data indicates good agreement for the minimum heat flux and the minimum film boiling temperature. Results indicate that the minimum conditions may span a wide range depending upon the thermophysical nature of the heater surface and the boiling liquid.


Sign in / Sign up

Export Citation Format

Share Document