scholarly journals Experimental study on the characteristics of the near wake of a blade-like body with an axisymmetric cross-section rotating about one end. 1st report Comparison with two-dimensional flow field.

1987 ◽  
Vol 53 (487) ◽  
pp. 832-838
Author(s):  
Tohru FUKANO ◽  
Hidechito HAYASHI ◽  
Tetsuya SHIMADA ◽  
Hironori NAKANISHI ◽  
Yoshinori HARA
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


Author(s):  
Jeonghwa Seo ◽  
Bumwoo Han ◽  
Shin Hyung Rhee

Effects of free surface on development of turbulent boundary layer and wake fields were investigated. By measuring flow field around a surface piercing cylinder in various advance speed conditions in a towing tank, free surface effects were identified. A towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was used to measure the flow field under free surface. The cross section of the test model was water plane shape of the Wigley hull, of which longitudinal length and width were 1.0 m and 100 mm, respectively. With sharp bow shape and slender cross section, flow separation was not expected in two-dimensional flow. Flow fields near the free-surface and in deep location that two-dimensional flow field was expected were measured and compared to identify free-surface effects. Some planes perpendicular to longitudinal direction near the model surface and behind the model were selected to track development of turbulent boundary layer. Froude numbers of the test conditions were from 0.126 to 0.40 and corresponding Reynolds numbers were from 395,000 to 1,250,000. In the lowest Froude number condition, free-surface wave was hardly observed and only free surface effects without surface wave could be identified while violent free-surface behavior due to wave-induced separation dominated the flow fields in the highest Froude number condition. From the instantaneous velocity fields, Time-mean velocity, turbulence kinetic energy, and flow structure derived by proper orthogonal decomposition (POD) were analyzed. As the free-surface effect, development of retarded wake, free-surface waves, and wave-induced separation were mainly observed.


2010 ◽  
Vol 654 ◽  
pp. 351-361 ◽  
Author(s):  
M. SANDOVAL ◽  
S. CHERNYSHENKO

According to the Prandtl–Batchelor theorem for a steady two-dimensional flow with closed streamlines in the inviscid limit the vorticity becomes constant in the region of closed streamlines. This is not true for three-dimensional flows. However, if the variation of the flow field along one direction is slow then it is possible to expand the solution in terms of a small parameter characterizing the rate of variation of the flow field in that direction. Then in the leading-order approximation the projections of the streamlines onto planes perpendicular to that direction can be closed. Under these circumstances the extension of the Prandtl–Batchelor theorem is obtained. The resulting equations turned out to be a three-dimensional analogue of the equations of the quasi-cylindrical approximation.


2012 ◽  
Vol 48 (10) ◽  
Author(s):  
Hamid Roshan ◽  
Gabriel C. Rau ◽  
Martin S. Andersen ◽  
Ian R. Acworth

1965 ◽  
Vol 22 (2) ◽  
pp. 359-369 ◽  
Author(s):  
N. S. Clarke

This paper is concerned with the two-dimensional flow in a free waterfall, falling under the influence of gravity, the fluid being considered to be incompressible and inviscid. A parameter ε, such that 2/ε is the Froude number based on conditions far upstream, is defined and considered to be small. A flowline co-ordinate system is used to overcome the difficulty that the boundary geometry is not known in advance. An asymptotic expansion based on ε is constructed as an approximation valid upstream and near the edge, but singular far downstream. Another asymptotic expansion, based upon the thinness of the fall, is constructed as an approximation valid far downstream, but failing to satisfy the conditions upstream. The two expansions are then matched to give a solution covering the whole flow field. The shapes of the free streamlines are shown for a number of values of ε for which the solutions are seemingly valid.


Sign in / Sign up

Export Citation Format

Share Document