scholarly journals Control of fluid forces acting on a circular cylinder and its effectiveness. Controlled by a fine circular cylinder.

1991 ◽  
Vol 57 (535) ◽  
pp. 882-890 ◽  
Author(s):  
Hiroshi SAKAMOTO ◽  
Hiroyuki HANIU ◽  
Shinobu MATUBARA
Author(s):  
P. W. Bearman ◽  
F. J. Huera Huarte ◽  
J. R. Chaplin

Distributions of the fluid forces acting along a long flexible circular cylinder free to respond in-line and transverse to a stepped current are presented. Forces are calculated using a finite element model of the cylinder with measured responses providing the input. The length to diameter ratio of the model used was 469, the mass ratio was 3 and the Reynolds number could be varied up to maximum value of approximately 2.6 · 104. Fluid force coefficients for two cases are presented: in the first, the dominant modes are the 2nd cross-flow and the 4th in line. For the second case the leading modes are the 7th and 12th respectively. In general, transverse force coefficients and in-line drag coefficients are found to be larger than those measured for short sections of cylinder undergoing free and forced one and two-dimensional motions. It is anticipated that the results will be of value to developers of vortex-induced vibration prediction methods.


2006 ◽  
Vol 2006.45 (0) ◽  
pp. 73-74
Author(s):  
Tooru KINOSHITA ◽  
Hiroshi SAKAMOTO ◽  
Kazunori TAKAI ◽  
Yoshihiro OBATA

1990 ◽  
Vol 112 (1) ◽  
pp. 67-73 ◽  
Author(s):  
H. Watanabe ◽  
A. Ihara ◽  
S. Onuma

In a horizontal flow channel an experimental study was made on the effects of a small amount of air bubbles on the performance of a circular cylinder at a critical flow range where the drag coefficient of the test model decreased as Reynolds number increased. The measurements of the pressure distribution and fluid forces on the cylinder, the longitudinal turbulence level in water phase and the bubble size distribution in a free stream were taken. The results indicated that a large reduction in the drag coefficient and a change of the pressure distribution around the test model were caused at the low critical flow range by introducing a very small quantity of air bubbles such as 0.05 percent, though the turbulence level in water phase did not increase.


Author(s):  
Cedric Leblond ◽  
Jean-Franc¸ois Sigrist ◽  
Christian Laine ◽  
Bruno Auvity ◽  
Hassan Peerhossaini

This paper is related to the fluid forces prediction on a rapidly moving circular cylinder in cylindrical confinement. The Fritz model, which mainly assumes infinitesimal motions of the inner cylinder in an inviscid fluid, is one of the simplest model available in the scientific literature and is often used by design engineers in the nuclear industry. In this paper, simple non-linear expressions of fluid forces are derived for the case of finite amplitude motions of the inner cylinder. Assuming a potential flow, advection term and geometrical deformations can be taken into account. The problem, formulated as a boundary-perturbation problem, is solved thanks to a regular expansion. The range of validity of the approximate analytical solution thus obtained is theoretically discussed. The results are also confronted to numerical simulations, which allows to emphasize some limits and advantages of the analytical approach.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Cédric Leblond ◽  
Vincent Melot ◽  
Jean-François Sigrist ◽  
Christian Lainé ◽  
Bruno Auvity ◽  
...  

The present paper treats the transient fluid forces experienced by a rigid circular cylinder moving along a radial line in a fluid initially at rest. The body is subjected to a rapid displacement of relatively small amplitude in relation to its radius. Both infinite and cylindrically confined fluid domains are considered. Furthermore, non-negligible amplitude motions of the inner cylinder, and viscous and compressible fluid effects are addressed, successively. Different analytical methods and models are used to tackle each of these issues. For motions of non-negligible amplitude of the inner cylinder, a potential flow is assumed and the model, formulated as a two-dimensional boundary perturbation problem, is solved using a regular expansion up to second order. Subsequently, viscous and compressible effects are handled by assuming infinitesimal amplitude motions. The viscous fluid forces are formulated by solving a singular perturbation problem of the first order. Compressible fluid forces are then determined from the wave equation. A nonlinear formulation is obtained for the non-negligible amplitude motion. The viscous and compressible fluid forces, formulated in terms of convolution products, are linked to fluid history effects induced by wave propagation phenomena in the fluid domain. These models are expressed with dimensionless parameters and illustrated for a specific motion imposed on the inner cylinder. The different analytical models permit coverage of a broad range of motions. Hence, for a given geometry and imposed displacement, the appropriate fluid model can be identified and the resulting fluid forces rapidly estimated. The limits of these formulations are also discussed.


Author(s):  
Vincent Melot ◽  
Jean Franc¸ois Sigrist ◽  
Christian Laine ◽  
Bruno Auvity ◽  
Hassan Peerhossaini

The present paper deals with the study of fluid forces in an incompressible viscous fluid at rest around an accelerated rigid circular cylinder. The movement subjected to the cylinder is an impulsive motion represented by a only one period of a sinusoidal acceleration. After this period, the cylinder is stopped. This study is performed for small displacement of the cylinder, i.e. for low KEULEGAN-CARPENTER numbers, and for various STOKES numbers. An analytical formulation of fluid forces exerted on a cylinder subjected to any motion is first proposed. The starting point of the analytical approach is the solution of fluid forces in steady state harmonic motion. A Fourier transform is applied on the harmonic solution to capture the wide frequency spectrum composing the transient motion. Then an inverse Fourier transform is applied on the expression to achieve the solution in the temporal space. A numerical simulation is then carried out with a CFD code using finite volume method with moving mesh technique in ALE formulation. The analytical and numerical solutions are exposed and discussed in the case of a cylinder subjected to a sine wave acceleration. The competition between the viscous diffusion time and the wave duration time is studied and highlights the history effect on pressure forces and shear forces.


2003 ◽  
Vol 69 (679) ◽  
pp. 574-578
Author(s):  
Kunio TAN ◽  
Masaru MORIYA ◽  
Hiroshi SAKAMOTO

Sign in / Sign up

Export Citation Format

Share Document