Effects of a Few Small Air Bubbles on the Performance of Circular Cylinder at Critical Flow Range in Water

1990 ◽  
Vol 112 (1) ◽  
pp. 67-73 ◽  
Author(s):  
H. Watanabe ◽  
A. Ihara ◽  
S. Onuma

In a horizontal flow channel an experimental study was made on the effects of a small amount of air bubbles on the performance of a circular cylinder at a critical flow range where the drag coefficient of the test model decreased as Reynolds number increased. The measurements of the pressure distribution and fluid forces on the cylinder, the longitudinal turbulence level in water phase and the bubble size distribution in a free stream were taken. The results indicated that a large reduction in the drag coefficient and a change of the pressure distribution around the test model were caused at the low critical flow range by introducing a very small quantity of air bubbles such as 0.05 percent, though the turbulence level in water phase did not increase.

1972 ◽  
Vol 23 (1) ◽  
pp. 1-6 ◽  
Author(s):  
B R Bostock ◽  
W A Mair

SummaryMeasurements in two-dimensional flow on rectangular cylinders confirm earlier work of Nakaguchi et al in showing a maximum drag coefficient when the height h of the section (normal to the stream) is about 1.5 times the width d. Reattachment on the sides of the cylinder occurs only for h/d < 0.35.For cylinders of D-shaped section (Fig 1) the pressure distribution on the curved surface and the drag are considerably affected by the state of the boundary layer at separation, as for a circular cylinder. The lift is positive when the separation is turbulent and negative when it is laminar. It is found that simple empirical expressions for base pressure or drag, based on known values for the constituent half-bodies, are in general not satisfactory.


1965 ◽  
Vol 87 (4) ◽  
pp. 521-525 ◽  
Author(s):  
J. C. Y. Koh ◽  
J. P. Hartnett

The aerodynamic and heat-transfer characteristics for flow over an upstream-facing cylindrical cup simulating a parachute geometry were studied. It was found that: (1) The pressure on the bottom of the cup increases as the depth of the cup increases. (2) An increase in the free-stream turbulence level increases the aerodynamic heat transfer significantly. (3) The heat transfer front the bottom of the cup decreases monotonically as the depth of the cup increases. (4) The effect of suction at the cup bottom is to equalize the pressure distribution and to increase the heat transfer.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency fs when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag force over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies f varying between 0.25 and 5 times the natural shedding frequency were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. This drop in the drag coefficient is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder.


1997 ◽  
Vol 119 (2) ◽  
pp. 292-301 ◽  
Author(s):  
K. Funazaki ◽  
M. Yokota ◽  
S. Yamawaki

Detailed studies are conducted on film effectiveness of discrete cooling holes around the leading edge of a blunt body that is subjected to periodically incoming wakes as well as free-stream turbulence with various levels of intensity. The cooling holes have a configuration similar to that of typical turbine blades except for the spanwise inclination angle. Secondary air is heated so that the temperature difference between the mainstream and secondary air is about 20 K. In this case, the air density ratio of the mainstream and secondary air becomes less than unity, therefore the flow condition encountered in an actual aero-engine cannot be simulated in terms of the density ratio. A spoke-wheel type wake generator is used in this study. In addition, three types of turbulence grids are used to elevate the free-stream turbulence intensity. We adopt three blowing ratios of the secondary air to the mainstream. For each of the blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples situated inside the model. The temperature is visualized using liquid crystals in order to obtain qualitative information of film effectiveness distribution.


1997 ◽  
Vol 119 (3) ◽  
pp. 405-411 ◽  
Author(s):  
R. E. Mayle ◽  
A. Schulz

A theory is presented for calculating the fluctuations in a laminar boundary layer when the free stream is turbulent. The kinetic energy equation for these fluctuations is derived and a new mechanism is revealed for their production. A methodology is presented for solving the equation using standard boundary layer computer codes. Solutions of the equation show that the fluctuations grow at first almost linearly with distance and then more slowly as viscous dissipation becomes important. Comparisons of calculated growth rates and kinetic energy profiles with data show good agreement. In addition, a hypothesis is advanced for the effective forcing frequency and free-stream turbulence level that produce these fluctuations. Finally, a method to calculate the onset of transition is examined and the results compared to data.


Author(s):  
K. Funazaki ◽  
M. Yokota ◽  
S. Yamawaki

Detailed studies are conducted on film effectiveness of discrete cooling holes around the leading edge of a blunt body that is subjected to periodically incoming wakes as well as free-stream turbulence with various levels of intensity. The cooling holes have a configuration similar to that of typical turbine blades except for the spanwise inclination angle. Secondary air is heated so that the temperature difference between the mainstream and secondary air is about 20K. In this case, air density ratio of the mainstream and secondary air becomes less than unity, therefore the flow condition encountered in an actual aero-engine can not be simulated in terms of the density ratio. A spoke-wheel type wake generator is used in this study. In addition, three types of turbulence grids are used to elevate the free-stream turbulence intensity. We adopt three blowing ratios of the secondary air to the mainstream. For each of the blowing ratios, wall temperature around the surface of the test model are measured by thermocouples situated inside the model. The temperature is visualized using liquid crystals in order to obtain qualitative information of film effectiveness distribution.


Author(s):  
Efstathios Konstantinidis

The fundamental understanding of the added mass phenomenon associated with the motion of a solid body relative to a fluid is revisited. This paper focuses on the two-dimensional flow around a circular cylinder oscillating transversely in a free stream. A virtual experiment reveals that the classical approach to this problem leads to a paradox. The inertial force is derived afresh based on analysis of the motion in a frame of reference attached to the cylinder centroid, which overcomes the paradox in the classical formulation. It is shown that the inertial force depends not only on the acceleration of the cylinder per se , but also on the relative motion between body and fluid embodied in a parameter called alpha, α , which represents the ratio of the maximum transverse velocity of the cylinder to the free-stream velocity; the induced inertial force is directionally varying and non-harmonic in time depended on the alpha parameter. It is further shown that the component of the inertial force in the transverse direction is negligible for α <0.1, increases quadratically for α <0.5, and tends asymptotically to the classical result as , i.e. in still fluid.


Sign in / Sign up

Export Citation Format

Share Document