scholarly journals Flow and Heat Transfer Characteristics of Fin Arrays in the Middle Reynolds Number Range. Effect of the Fin Wake Length.

1998 ◽  
Vol 64 (617) ◽  
pp. 204-211
Author(s):  
Kyoji INAOKA ◽  
Kenjiro SUZUKI
2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Yu Rao ◽  
Chaoyi Wan ◽  
Shusheng Zang

An experimental and numerical study was conducted to investigate the flow and heat transfer characteristics in channels with pin fin-dimple combined arrays of different configurations, where dimples are located transversely or both transversely and streamwisely between the pin fins. The flow structure, friction factor, and heat transfer characteristics of the pin fin-dimple channels of different configurations have been obtained and compared with each other for the Reynolds number range of 8200–50,500. The experimental study showed that, compared to the pin fin channel, depending on the configurations of the pin fin-dimple combined arrays the pin fin-dimple channel can have distinctively further improved convective heat transfer performance by 8.0%–20.0%, whereas lower or slightly higher friction factors over the studied Reynolds number range. Furthermore, three-dimensional and steady-state conjugate computations have been carried out for similar experimental conditions. The numerical computations showed detailed characteristics of the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the pressure loss and heat transfer characteristics in the pin fin-dimple channels of different configurations.


2014 ◽  
Vol 18 (2) ◽  
pp. 465-478
Author(s):  
Mahmoud Mostafa ◽  
Radwan Kamal ◽  
Mohamed Gobran

An experimental investigation has been conducted to clarify heat transfer characteristics and flow behaviors around an elliptic cylinder. Also, flow visualization was carried out to clarify the flow patterns around the cylinder. The elliptic cylinder examined has an axis ratio of 1:2.17, was placed in the focus of parabolic plate. The test fluid is air and the Reynolds number based on the major axis length, c, ranged from 5 x 103 to 3 x 104. The angle of attack (?) was changed from 0? to 90? at 15? interval. It is found that the pressure distribution, form drag, location of separation point, and heat transfer coefficient depend strongly upon the angle of attack. Over the Reynolds number range examined, the mean heat transfer coefficient is at its highest at ? = 60? - 90?. The values of heat transfer coefficient in the case of free cylinder are higher than those for cylinder/plate combination at all angles of attack and Reynolds number range examined.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Sangamesh C. Godi ◽  
Arvind Pattamatta ◽  
C. Balaji

Abstract In this work, fluid flow and heat transfer characteristics of three-dimensional (3D) wall jets exiting from a circular and square opening are presented based on experimental investigations. Two hydraulic diameters, namely, 2.5 and 7.5 mm and a Reynolds number range of 5000–20,000 have been considered. Mean velocity and turbulence intensity distribution in the walljet are quantified using a hot wire anemometry. Measurements are done both along the streamwise and spanwise directions. Transient infrared thermography is used for mapping the temperatures over the surface, and the heat transfer coefficients are estimated using a semi-infinite approximation methodology. Results show that, for circular jets, the effect of the jet diameter on the local and the spanwise-averaged Nusselt number is most pronounced near the jet exit. Further, it is also observed that circular jets have an edge over square jets. A correlation with a high correlation coefficient of 0.95 has been developed for spanwise average Nusselt number as a function of the Reynolds number and the dimensionless streamwise distance.


2012 ◽  
Vol 16 (2) ◽  
pp. 593-603 ◽  
Author(s):  
M. Nili-Ahmadabadi ◽  
H. Karrabi

This paper will present the results of the experimental investigation of heat transfer in a non-annular channel between rotor and stator similar to a real generator. Numerous experiments and numerical studies have examined flow and heat transfer characteristics of a fluid in an annulus with a rotating inner cylinder. In the current study, turbulent flow region and heat transfer characteristics have been studied in the air gap between the rotor and stator of a generator. The test rig has been built in a way which shows a very good agreement with the geometry of a real generator. The boundary condition supplies a non-homogenous heat flux through the passing air channel. The experimental devices and data acquisition method are carefully described in the paper. Surface-mounted thermocouples are located on the both stator and rotor surfaces and one slip ring transfers the collected temperature from rotor to the instrument display. The rotational speed of rotor is fixed at three under: 300rpm, 900 rpm and 1500 rpm. Based on these speeds and hydraulic diameter of the air gap, the Reynolds number has been considered in the range: 4000<Rez<30000. Heat transfer and pressure drop coefficients are deduced from the obtained data based on a theoretical investigation and are expressed as a formula containing effective Reynolds number. To confirm the results, a comparison is presented with Gazley?s (1985) data report. The presented method and established correlations can be applied to other electric machines having similar heat flow characteristics.


Author(s):  
Julian P. Gutierrez ◽  
Alfonso Ortega ◽  
Amador M. Guzman

The flow and heat transfer characteristics of an impinging jet on a perpendicular flat surface are obtained by two dimensional numerical simulations of laminar and transitional flow regimes for the Reynolds number of Re = 300, 350, and 400 for a Prandtl number of Pr = 0.7. A fixed jet to plate spacing of H/W = 5 and a given heat flux on the plate surface are considered. Temporal evolution of velocity and temperature fields, Fourier spectra of the velocity temporal evolution and time average local and global Nusselt numbers are obtained for increasing Reynolds numbers for determining the time depending behavior and its effect on the heat transfer characteristics. Numerical simulation results demonstrate that self-sustained transitional periodic flow regimes arise from a laminar regime, when the Reynolds number is further increased to Re = 400 and that these regimes spread out to the whole domain with similar time dependent characteristics due to the flow incompressibility. Evaluations of time average local and global Nusselt numbers demonstrate the asymmetric Gaussian-type spatial distribution and the increase of both parameters when the flow evolves through the transitional periodic regime, with reasonable increases on the pumping power requirements.


Author(s):  
Tarek M. Abdel-Salam

This study presents results for flow and heat transfer characteristics of two-dimensional rectangular impinging jets and three-dimensional circular impinging jets. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume computational fluid dynamics (CFD) code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results of the three-dimensional cases show that Reynolds number has no effect on the velocity distribution of the center jet. Results of both two-dimensional and three-dimensional cases show that Reynolds number highly affects the heat transfer and values of the Nusselt number. The maximum Nusselt number was always found at the stagnation point of the center jet.


Author(s):  
Gaoliang Liao ◽  
Xinjun Wang ◽  
Xiaowei Bai ◽  
Ding Zhu ◽  
Jinling Yao

By using the CFX software, the three-dimensional flow and heat transfer characteristics in the cooling duct with pin-fin in the blade trailing edge were numerically simulated. The effects of pin-fin arrangements, Reynolds number, steam superheat degrees, streamwise pin density and convergence angle of the wedge duct on the flow and heat transfer characteristics were analysed. The results show that the Nusselt number on the endwall and pin-fin surfaces as well as the pin-fin row averaged Nusselt number increase with the increasing of Reynolds number, while it decreased with the with the increasing of X/D. The pressure drop increases with the increasing of Reynolds number while decreases with the increasing of X/D in the wedge duct. The degree of superheat has little effect on the pressure loss in the wedge duct. A comprehensive analysis and comparison show that the highest thermal performance is reached in the wedge duct when the value of X/D is 1.5.


Sign in / Sign up

Export Citation Format

Share Document