scholarly journals Flow and heat transfer characteristics around an elliptic cylinder placed in front of a curved plate

2014 ◽  
Vol 18 (2) ◽  
pp. 465-478
Author(s):  
Mahmoud Mostafa ◽  
Radwan Kamal ◽  
Mohamed Gobran

An experimental investigation has been conducted to clarify heat transfer characteristics and flow behaviors around an elliptic cylinder. Also, flow visualization was carried out to clarify the flow patterns around the cylinder. The elliptic cylinder examined has an axis ratio of 1:2.17, was placed in the focus of parabolic plate. The test fluid is air and the Reynolds number based on the major axis length, c, ranged from 5 x 103 to 3 x 104. The angle of attack (?) was changed from 0? to 90? at 15? interval. It is found that the pressure distribution, form drag, location of separation point, and heat transfer coefficient depend strongly upon the angle of attack. Over the Reynolds number range examined, the mean heat transfer coefficient is at its highest at ? = 60? - 90?. The values of heat transfer coefficient in the case of free cylinder are higher than those for cylinder/plate combination at all angles of attack and Reynolds number range examined.

2011 ◽  
Vol 422 ◽  
pp. 762-766
Author(s):  
Shao Feng Yan ◽  
Xiu Juan Bian ◽  
Bo Yuan Sui

Heat exchanger of Sleeve type was used in the experiment with water for working medium, hot water inside of tube, cold water outside of tube, For ring gap of 0.50mm~2.50mm, Reynolds number range in 7000, the heat transfer characteristics of the fluid of narrow annular channel was made by doing experiments and study. According to the result of the experiment, heat transfer coefficient and Reynolds number of function relation curves of Re-and Re-K are made. It was found that narrow ring channel has the remarkable strengthening effect with compact structure. Decreasing of the narrow gap dimension, the heat transfer coefficient increases.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Yu Rao ◽  
Chaoyi Wan ◽  
Shusheng Zang

An experimental and numerical study was conducted to investigate the flow and heat transfer characteristics in channels with pin fin-dimple combined arrays of different configurations, where dimples are located transversely or both transversely and streamwisely between the pin fins. The flow structure, friction factor, and heat transfer characteristics of the pin fin-dimple channels of different configurations have been obtained and compared with each other for the Reynolds number range of 8200–50,500. The experimental study showed that, compared to the pin fin channel, depending on the configurations of the pin fin-dimple combined arrays the pin fin-dimple channel can have distinctively further improved convective heat transfer performance by 8.0%–20.0%, whereas lower or slightly higher friction factors over the studied Reynolds number range. Furthermore, three-dimensional and steady-state conjugate computations have been carried out for similar experimental conditions. The numerical computations showed detailed characteristics of the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the pressure loss and heat transfer characteristics in the pin fin-dimple channels of different configurations.


2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


Author(s):  
Lorenzo Cremaschi

Driven by higher energy efficiency targets and industrial needs of process intensification and miniaturization, nanofluids have been proposed in energy conversion, power generation, chemical, electronic cooling, biological, and environmental systems. In space conditioning and in cooling systems for high power density electronics, vapor compression cycles provide cooling. The working fluid is a refrigerant and oil mixture. A small amount of lubricating oil is needed to lubricate and to seal the sliding parts of the compressors. In heat exchangers the oil in excess penalizes the heat transfer and increases the flow losses: both effects are highly undesired but yet unavoidable. This paper studies the heat transfer characteristics of nanorefrigerants, a new class of nanofluids defined as refrigerant and lubricant mixtures in which nano-size particles are dispersed in the high-viscosity liquid phase. The heat transfer coefficient is strongly governed by the viscous film excess layer that resides at the wall surface. In the state-of-the-art knowledge, while nanoparticles in the refrigerant and lubricant mixtures were recently experimentally studied and yielded convective in-tube flow boiling heat transfer enhancements by as much as 101%, the interactions of nanoparticles with the mixture still pose several open questions. The model developed in this work suggested that the nanoparticles in this excess layer generate a micro-convective mass flux transverse to the flow direction that augments the thermal energy transport within the oil film in addition to the macroscopic heat conduction and fluid convection effects. The nanoparticles motion in the shearing-induced and non-uniform shear rate field is added to the motion of the nanoparticles due to their own Brownian diffusion. The augmentation of the liquid phase thermal conductivity was predicted by the developed model but alone it did not fully explain the intensification on the two-phase flow boiling heat transfer coefficient reported in previous work in the literature. Thus, additional nano- and micro-scale heat transfer intensification mechanisms were proposed.


Author(s):  
S. Kabelac ◽  
K. B. Anoop

Nanofluids are colloidal suspensions with nano-sized particles (<100nm) dispersed in a base fluid. From literature it is seen that these fluids exhibit better heat transfer characteristics. In our present work, thermal conductivity and the forced convective heat transfer coefficient of an alumina-water nanofluid is investigated. Thermal conductivity is measured by a steady state method using a Guarded Hot Plate apparatus customized for liquids. Forced convective heat transfer characteristics are evaluated with help of a test loop under constant heat flux condition. Controlled experiments under turbulent flow regime are carried out using two particle concentrations (0.5vol% and 1vol %). Experimental results show that, thermal conductivity of nanofluids increases with concentration, but the heat transfer coefficient in the turbulent regime does not exhibit any remarkable increase above measurement uncertainty.


1994 ◽  
Vol 116 (1) ◽  
pp. 49-54 ◽  
Author(s):  
R. A. Wirtz ◽  
Ashok Mathur

Measurements of the distribution of convective heat transfer over the five exposed faces of a low profile electronic package are described. The package, of square planform and length-to-height ratio, L/a = 6, is part of a regular array of such elements attached to one wall of a low aspect ratio channel. The coolant is air, and experiments are described for the Reynolds number range, 3000<Re<7000. The average heat transfer coefficient for the top face is found to be nearly equal to the overall average heat transfer coefficient for the element. The average heat transfer coefficient for the upstream face and two side faces are higher than the overall average by approximately 30–40 percent and 20–30 percent, respectively while that for the downstream face is 20–30 percent less than the overall average. Furthermore, the distribution in local heat transfer coefficient over the five surfaces of the element is approximately independent of variations in Reynolds number.


Author(s):  
Michael Maurer ◽  
Uwe Ruedel ◽  
Michael Gritsch ◽  
Jens von Wolfersdorf

An experimental study was conducted to determine the heat transfer performance of advanced convective cooling techniques at the typical conditions found in a backside cooled combustion chamber. For these internal cooling channels, the Reynolds number is usually found to be above the Reynolds number range covered by available databases in the open literature. As possible candidates for an improved convective cooling configuration in terms of heat transfer augmentation and acceptable pressure drops, W-shaped and WW-shaped ribs were considered for channels with a rectangular cross section. Additionally, uniformly distributed hemispheres were investigated. Here, four different roughness spacings were studied to identify the influence on friction factors and the heat transfer enhancement. The ribs and the hemispheres were placed on one channel wall only. Pressure losses and heat transfer enhancement data for all test cases are reported. To resolve the heat transfer coefficient, a transient thermocromic liquid crystal technique was applied. Additionally, the area-averaged heat transfer coefficient on the W-shaped rib itself was observed using the so-called lumped-heat capacitance method. To gain insight into the flow field and to reveal the important flow field structures, numerical computations were conducted with the commercial code FLUENT™.


Author(s):  
P. Razi ◽  
M. A. Akhavan-Behabadi

An experimental investigation has been carried out to study the heat transfer characteristics of CuO-Base oil nanofluid flow inside horizontal flattened tubes under constant heat flux. The nanofluid flowing inside the tube is heated by an electrical heating coil wrapped around it. The convective heat transfer coefficients of nanofluids are obtained for laminar fully developed flow inside round and flattened tubes. The effect of different parameters such as Reynolds number, flattened tube internal height, nanoparticles concentration and heat flux on heat transfer coefficient is studied. Observations show that the heat transfer performance is improved as the tube profile is flattened. The heat transfer coefficient is increased by using nanofluid instead of base fluid. Also, it can be concluded that decreasing the internal height of the flattened tubes and increasing the concentration of nanoparticles both contribute to the enhancement of heat transfer coefficient.


Author(s):  
Ataollah Khanlari ◽  
Adnan Sözen ◽  
Halil İbrahim Variyenli

PurposeThe plate heat exchangers (PHE) with small size but large efficiency are compact types of heat exchangers formed by corrugated thin pressed plates, operating at higher pressures when compared to most other traditional exchangers. This paper aims to analyze heat transfer characteristics in the PHE experimentally and numerically.Design/methodology/approachComputational fluid dynamics analysis has been used to simulate the problem by using the ANSYS fluent 16 software. Also, the effect of using TiO2/water nanofluid as working fluid was investigated. TiO2/water nanofluid had 2% (Wt/Wt) nanoparticle content. To improve solubility of the TiO2nanoparticles, Triton X-100 was added to the mixture. The results have been achieved in different working condition with changes in fluid flow rate and its temperature.FindingsThe obtained results showed that using TiO2/water nanofluid improved the overall heat transfer coefficient averagely as 6%, whereas maximum improvement in overall heat transfer coefficient was 10%. Also, theoretical and experimental results are in line with each other.Originality/valueThe most important feature which separates the present study from the literature is that nanofluid is prepared by using TiO2nanoparticles in optimum size and mixing ratio with surfactant usage to prevent sedimentation and flocculation problems. This process also prevents particle accumulation that may occur inside the PHE. The main aim of the present study is to predict heat transfer characteristics of nanofluids in a plate heat exchanger. Therefore, it will be possible to analyze thermal performance of the nanofluids without any experiment.


Sign in / Sign up

Export Citation Format

Share Document