scholarly journals Classification of Aggregate Structure of Ferrofluids under Condition of Strong Magnetic Fields and Simple Shear Flow Fields.

2001 ◽  
Vol 67 (663) ◽  
pp. 2709-2716
Author(s):  
Mikio YAMANOI ◽  
Shuichi TANOUE ◽  
Yoshiyuki IEMOTO
2002 ◽  
Vol 455 ◽  
pp. 359-386 ◽  
Author(s):  
FRANCK PIGEONNEAU ◽  
FRANÇOIS FEUILLEBOIS

The relative motion of drops in shear flows is responsible for collisions leading to the creation of larger drops. The collision of liquid drops in a gas is considered here. The drops are small enough for the Reynolds number to be low (negligible fluid motion inertia), yet large enough for the Stokes number to be possibly of order unity (non-negligible inertia in the motion of drops). Possible concurrent effects of Van der Waals attractive forces and drop inertia are taken into account.General expressions are first presented for the drag forces on two interacting drops of different sizes embedded in a general linear flow field. These expressions are obtained by superposition of solutions for the translation of drops and for steady drops in elementary linear flow fields (simple shear flows, pure straining motions). Earlier solutions adapted to the case of inertialess drops (by Zinchenko, Davis and coworkers) are completed here by the solution for a simple shear flow along the line of centres of the drops. A solution of this problem in bipolar coordinates is provided; it is consistent with another solution obtained as a superposition of other elementary flow fields.The collision efficiency of drops is calculated neglecting gravity effects, that is for strongly sheared linear flow fields. Results are presented for the cases of a simple linear shear flow and an axisymmetric pure straining motion. As expected, the collision efficiency increases with the Stokes numbers, that is with drop inertia. On the other hand, the collision efficiency in a simple shear flow becomes negligible below some value of the ratio of radii, regardless of drop inertia. The value of this threshold increases with decreasing Van der Waals forces. The concurrence between drop inertia and attractive van der Waals forces results in various anisotropic shapes of the collision cross-section. By comparison, results for the collision efficiency in an axisymmetric pure straining motion are more regular. This flow field induces axisymmetric sections of collision and strong inertial effects resulting in collision efficiencies larger than unity. Effects of van der Waals forces only appear when one of the drops has a very low Stokes number.


Author(s):  
Tobias Merkel ◽  
Julius Henne ◽  
Lena Hecht ◽  
Volker Gräf ◽  
Elke Walz ◽  
...  

2006 ◽  
Vol 91 (9) ◽  
pp. 3415-3424 ◽  
Author(s):  
Juan Jaspe ◽  
Stephen J. Hagen

2009 ◽  
Vol 626 ◽  
pp. 367-393 ◽  
Author(s):  
STEFAN MÄHLMANN ◽  
DEMETRIOS T. PAPAGEORGIOU

The effect of an electric field on a periodic array of two-dimensional liquid drops suspended in simple shear flow is studied numerically. The shear is produced by moving the parallel walls of the channel containing the fluids at equal speeds but in opposite directions and an electric field is generated by imposing a constant voltage difference across the channel walls. The level set method is adapted to electrohydrodynamics problems that include a background flow in order to compute the effects of permittivity and conductivity differences between the two phases on the dynamics and drop configurations. The electric field introduces additional interfacial stresses at the drop interface and we perform extensive computations to assess the combined effects of electric fields, surface tension and inertia. Our computations for perfect dielectric systems indicate that the electric field increases the drop deformation to generate elongated drops at steady state, and at the same time alters the drop orientation by increasing alignment with the vertical, which is the direction of the underlying electric field. These phenomena are observed for a range of values of Reynolds and capillary numbers. Computations using the leaky dielectric model also indicate that for certain combinations of electric properties the drop can undergo enhanced alignment with the vertical or the horizontal, as compared to perfect dielectric systems. For cases of enhanced elongation and alignment with the vertical, the flow positions the droplets closer to the channel walls where they cause larger wall shear stresses. We also establish that a sufficiently strong electric field can be used to destabilize the flow in the sense that steady-state droplets that can exist in its absence for a set of physical parameters, become increasingly and indefinitely elongated until additional mechanisms can lead to rupture. It is suggested that electric fields can be used to enhance such phenomena.


Sign in / Sign up

Export Citation Format

Share Document