scholarly journals An Investigation of Flame Base Structures of Turbulent Lifted Diffusion Flames. 1st Report. Measurements of temperature fields by the Rayleigh Scattering Method.

2002 ◽  
Vol 68 (668) ◽  
pp. 1295-1301
Author(s):  
Susumu NODA ◽  
Hisaya MORI ◽  
Yusuke HONGO
2000 ◽  
Author(s):  
Azer Yalin ◽  
Yuriy Ionikh ◽  
Alexander Meshchanov ◽  
Richard Miles

2010 ◽  
Vol 20 (12) ◽  
pp. 1552-1556 ◽  
Author(s):  
Li Fan ◽  
Shao-Pu Liu ◽  
Da-Cheng Yang ◽  
Xiao-Li Hu

2011 ◽  
Vol 50 (17) ◽  
pp. 2594 ◽  
Author(s):  
Marcin Szczurowski ◽  
Waclaw Urbanczyk ◽  
Maciej Napiorkowski ◽  
Petr Hlubina ◽  
Uwe Hollenbach ◽  
...  

Author(s):  
Jordi Estevadeordal ◽  
Dmitry Opaits ◽  
Chiranjeev Kalra

A laboratory investigation of Filtered Rayleigh Scattering (FRS) techniques for high-resolution and high-accuracy temperature measurements in rig tests with high pressures and temperatures and combustion is presented. Imaging techniques based on filtered Rayleigh scattering have the potential for two-dimensional (2D) and near wall measurement of gas velocity and temperature fields among other properties. For gas temperature measurements, laser Rayleigh scattering from gas molecules are typically captured with an ICCD camera and temperature can be inferred from the number density measured from the image intensities. The accuracy challenges associated with property spatial variations, gas composition, and pressure and temperature conditions are investigated for the rig test environments. Representative examples including mixing layer, jet and vortex flows and flame and combustion tests are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Haidong Wang ◽  
Chongning Li ◽  
Yanghe Luo ◽  
Zhiliang Jiang

The gold nanoparticle reaction of HAuCl4-H2O2 was very slow under 60°C, and the as-prepared graphene oxide nanoribbons (GONRs) exhibited strong catalysis of the reaction to form gold nanoparticles (AuNP) that appeared a resonance Rayleigh scattering (RRS) peak at 550 nm. Upon addition of potassium pyroantimonate (PA) ligand, it was adsorbed on the GONRs surface to inhibit the catalysis to cause the RRS peak decreasing. When the analyte of Na+ was added, the coordination reaction between PA and Na+ took place to form the stable complexes of [Na2(PA)] to release free GONRs catalyst that resulted in the RRS peak increasing linearly. Accordingly, a new and sensitive RRS method for Na+ was established, with a linear range of 0.69-25.8 nmol/L and a detection limit of 0.35 nmol/L Na+.


Sign in / Sign up

Export Citation Format

Share Document