scholarly journals A New Approach to the Solution of Thermal Elastohydrodynamic Lubrication in Line Contacts. 1st Report, Derivation of the Basic Equations for TEHL.

1992 ◽  
Vol 58 (550) ◽  
pp. 1897-1902 ◽  
Author(s):  
Hiromasa OKAMURA ◽  
Kiyoshi FUJIWARA
Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Tao He ◽  
Jiaxu Wang ◽  
Zhanjiang Wang ◽  
Dong Zhu

Line contact is common in many machine components, such as various gears, roller and needle bearings, and cams and followers. Traditionally, line contact is modeled as a two-dimensional (2D) problem when the surfaces are assumed to be smooth or treated stochastically. In reality, however, surface roughness is usually three-dimensional (3D) in nature, so that a 3D model is needed when analyzing contact and lubrication deterministically. Moreover, contact length is often finite, and realistic geometry may possibly include a crowning in the axial direction and round corners or chamfers at two ends. In the present study, plasto-elastohydrodynamic lubrication (PEHL) simulations for line contacts of both infinite and finite length have been conducted, taking into account the effects of surface roughness and possible plastic deformation, with a 3D model that is needed when taking into account the realistic contact geometry and the 3D surface topography. With this newly developed PEHL model, numerical cases are analyzed in order to reveal the PEHL characteristics in different types of line contact.


1983 ◽  
Vol 105 (4) ◽  
pp. 598-604 ◽  
Author(s):  
A. Mostofi ◽  
R. Gohar

In this paper, a numerical solution to the elastohydrodynamic lubrication (EHL) problem is presented for a cylindrical roller with axially profiled ends, rolling over a flat plane. Convergence was obtained for moderate load and material parameters (glass, steel, and a mineral oil). Isobars, contours, and section graphs, show pressure variation and film shape. Predictions of film thickness compare favorably with experiments which use the optical interference method, as well as with other theoretical results for an infinite line contact, or an ellipse having a long slender aspect ratio. The maximum EHL pressure occurs near the start of the profiling and can exceed pressure concentrations there predicted by elastostatic theory.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Punit Kumar ◽  
M. M. Khonsari

This paper investigates the traction behavior in heavily loaded thermo-elastohydrodynamic lubrication (EHL) line contacts using the Doolittle free-volume equation, which closely represents the experimental viscosity-pressure-temperature relationship and has recently gained attention in the field of EHL, along with Tait’s equation of state for compressibility. The well-established Carreau viscosity model has been used to describe the simple shear-thinning encountered in EHL. The simulation results have been used to develop an approximate equation for traction coefficient as a function of operating conditions and material properties. This equation successfully captures the decreasing trend with increasing slide to roll ratio caused by the thermal effect. The traction-slip characteristics are expected to be influenced by the limiting shear stress and pressure dependence of lubricant thermal conductivity, which need to be incorporated in the future.


2021 ◽  
pp. 1-29
Author(s):  
Ali Yalpanian ◽  
Raynald Guilbault

Abstract This study allows contact models based on semi-analytical methods including the impacts of thermoelastic deformations in contacts of finite dimension bodies. The proposed method controls heat flows crossing free boundaries. A comparison with FEA reveals that the proposed method can reduce the calculation times by more than 98%. The paper introduces the thermoelasticity effects into thermal-elastohydrodynamic lubrication (TEHL) modeling of line contact problems. The analysis reveals that including thermoelastic deformations changes the pressure profile and tends to localize the pressure close to the distribution center. Compared to TEHL simulations, the examined configurations caused an overall increase in the maximum pressure by about 9%, an overall film thickness reduction of about 7%, and an overall temperature increase of about 2 K.


Sign in / Sign up

Export Citation Format

Share Document