scholarly journals Parameter Identification Method for Motion Systems with Unknown Coulomb Friction.

1993 ◽  
Vol 59 (567) ◽  
pp. 3342-3348 ◽  
Author(s):  
Ichiro Awaya ◽  
Yoshiki Kato ◽  
Yuzi Ohta ◽  
Iwao Miyake ◽  
Masami Ito
Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 257
Author(s):  
Chenyang Zhang

Aiming at inertial and viscous parameter identification for the Stewart manipulator regardless of the influence of Coulomb friction, a simple and effective dynamical parameter identification method based on wavelet transform and joint velocity analysis is proposed in this paper. Compared with previously known identification methods, the advantages of the new approach are that (1) the excitation trajectory is easy to design, and (2) it can not only identify the inertial matrix, but also the viscous matrix accurately regardless of the influence of Coulomb friction. Comparison is made among the identification method proposed in this paper, another identification method proposed previously, and the true value calculated with a formula. The errors from results of different identification methods demonstrate that the method proposed in this paper shows great adaptability and accuracy.


AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055302
Author(s):  
Yong Zhu ◽  
Guangpeng Li ◽  
Shengnan Tang ◽  
Wanlu Jiang ◽  
Zhijian Zheng

Sign in / Sign up

Export Citation Format

Share Document