dynamical parameter
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Richard A. Guinee

Permanent magnet brushless motor drives (BLMD) are extensively used in electric vehicle (EV) propulsion systems because of their high power and torque to weight ratio, virtually maintenance free operation with precision control of torque, speed and position. An accurate dynamical parameter identification strategy is an essential feature in the adaptive control of such BLMD-EV systems where sensorless current feedback is employed for reliable torque control, with multi-modal penalty cost surfaces, in EV high performance tracking and target ranging. Application of the classical Powell Conjugate Direction optimization method is first discussed and its inaccuracy in dynamical parameter identification is illustrated for multimodal cost surfaces. This is used for comparison with the more accurate Fast Simulated Annealing/Diffusion (FSD) method, presented here, in terms of the returned parameter estimates. Details of the FSD development and application to the BLMD parameter estimation problem based on the minimum quantized parameter step sizes from noise considerations are provided. The accuracy of global parameter convergence estimates returned, cost function evaluation and the algorithm run time are presented. Validation of the FSD identification strategy is provided by excellent correlation of BLMD model simulation trace coherence with experimental test data at the optimal estimates and from cost surface simulation.


2021 ◽  
Vol 133 (6) ◽  
Author(s):  
Stefano Marò ◽  
Claudio Bonanno

AbstractWe deal with the orbit determination problem for hyperbolic maps. The problem consists in determining the initial conditions of an orbit and, eventually, other parameters of the model from some observations. We study the behaviour of the confidence region in the case of simultaneous increase in the number of observations and the time span over which they are performed. More precisely, we describe the geometry of the confidence region for the solution, distinguishing whether a parameter is added to the estimate of the initial conditions or not. We prove that the inclusion of a dynamical parameter causes a change in the rate of decay of the uncertainties, as suggested by some known numerical evidences.


2021 ◽  
Vol 54 (14) ◽  
pp. 7-12
Author(s):  
M. Wiesner ◽  
K. Schäfer ◽  
W. Bergmann ◽  
A. Berger ◽  
P. Shulpyakov ◽  
...  

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 257
Author(s):  
Chenyang Zhang

Aiming at inertial and viscous parameter identification for the Stewart manipulator regardless of the influence of Coulomb friction, a simple and effective dynamical parameter identification method based on wavelet transform and joint velocity analysis is proposed in this paper. Compared with previously known identification methods, the advantages of the new approach are that (1) the excitation trajectory is easy to design, and (2) it can not only identify the inertial matrix, but also the viscous matrix accurately regardless of the influence of Coulomb friction. Comparison is made among the identification method proposed in this paper, another identification method proposed previously, and the true value calculated with a formula. The errors from results of different identification methods demonstrate that the method proposed in this paper shows great adaptability and accuracy.


2016 ◽  
Vol 31 (4) ◽  
pp. 1393-1396 ◽  
Author(s):  
David M. Schultz ◽  
Thomas Spengler

Abstract In a recent article, Qian et al. introduced the quantities moist vorticity and moist divergence to diagnose locations of heavy rain. These quantities are constructed by multiplying the relative vorticity and divergence by relative humidity to the power k, where k = 10 in their article. Their approach is similar to that for the previously constructed quantity generalized moist potential vorticity. This comment critiques the approach of Qian et al., demonstrating that the moist vorticity, moist divergence, and by extension generalized moist potential vorticity are flawed mathematically and meteorologically. Raising relative humidity to the 10th power is poorly justified and is based on a single case study at a single time. No meteorological evidence is presented for why areas of moist vorticity and moist divergence should overlap with regions of 24-h accumulated rainfall. All three quantities have not been verified against the output of precipitation directly from the model nor is the approach of combining meteorological quantities into a single parameter appropriate in an ingredients-based forecasting approach. Researchers and forecasters are advised to plot the model precipitation directly and employ an ingredients-based approach, rather than rely on these flawed quantities.


2015 ◽  
Vol 30 (6) ◽  
pp. 1411-1428 ◽  
Author(s):  
Weihong Qian ◽  
Jun Du ◽  
Xiaolong Shan ◽  
Ning Jiang

Abstract Properly including moisture effects into a dynamical parameter can significantly increase the parameter’s ability to diagnose heavy rain locations. The relative humidity–based weighting approach used to extend the moist potential vorticity (MPV) to the generalized moist potential vorticity (GMPV) is analyzed and demonstrates such an improvement. Following the same approach, two new diagnostic parameters, moist vorticity (MV) and moist divergence (MD), have been proposed in this study by incorporating moisture effects into the traditional vorticity and divergence. A regional heavy rain event that occurred along the Yangtze River on 1 July 1991 is used as a case study, and 41 daily regional heavy rain events during the notorious flooding year of 1998 in eastern China are used for a systematic evaluation. Results show that after the moisture effects were properly incorporated, the improved ability of all three parameters to capture a heavy rain area is significant (statistically at the 99% confidence level): the GMPV is improved over the MPV by 194%, the MD over the divergence by 60%, and the MV over the vorticity by 34% in terms of the threat score (TS). The average TS is 0.270 for the MD, 0.262 for the MV, and 0.188 for the GMPV. Application of the MV and MD to assess heavy rain potential is not intended to replace a complete, multiscale forecasting methodology; however, the results from this study suggest that the MV and MD could be used to postprocess a model forecast to potentially improve heavy rain location predictions.


Sign in / Sign up

Export Citation Format

Share Document