scholarly journals A Study on Health Monitoring of Structures Composed Thin Plate by Using Bending Wave Propagation (Measurement of Bending Wave Propagation and Identification of Damage)

2004 ◽  
Vol 70 (696) ◽  
pp. 2263-2268
Author(s):  
Akihiko HIGASHI ◽  
Fumihiro MIZUGUCHI
Author(s):  
Judith L. Rochat ◽  
Victor W. Sparrow

Abstract Although realistic complex structures are usually difficult to model theoretically, fuzzy structure theory enables one to produce such a model without a detailed knowledge of the entire structure. Using the theory established by Pierce et al. [A. D. Pierce, V. W. Sparrow, and D. A. Russell, J. Vib. Acoust. (to be published), also ASME 93-WA/NCA-17.] regarding fundamental structural-acoustic idealizations for structures with imprecisely known or fuzzy internals, the effects that fuzzy attachments have on different wave types in a primary (or master) structure are examined in this paper. In the theory by Pierce et al., the primary structure that undergoes vibrations is a thin plate mounted in an infinite baffle. On one side of the plate are fuzzy attachments, represented as an array of attached mass-spring-dashpot systems, which are excited by an incident plane pulse. This known theory explains the effects of these attachments on bending waves in the plate. In this paper, the theory is extended to isolated compressional and shear waves in a plate. While studying this new problem, it is discovered that coupling effects occur when the plate and attachment properties are not uniform in the direction perpendicular to the wave propagation. Hence, unlike the bending wave theory which models a finite thin plate with point attached oscillators, the new wave type theory uses a thin plate infinite in one direction with line attached oscillators also infinite in the same direction. For both the compressional and shear waves, it is found that the fuzzy attachments add an apparent frequency dependent mass and damping to the plate. These results are similar to those for the bending wave theory.


2018 ◽  
Vol 32 (3) ◽  
pp. 1117-1124 ◽  
Author(s):  
Seong-In Moon ◽  
To Kang ◽  
Jung-Seok Seo ◽  
Jeong-Han Lee ◽  
Soon-Woo Han ◽  
...  

2019 ◽  
Vol 18 (5-6) ◽  
pp. 1789-1802 ◽  
Author(s):  
Subir Patra ◽  
Hossain Ahmed ◽  
Mohammadsadegh Saadatzi ◽  
Sourav Banerjee

In this article, experimental verification and validation of a peridynamics-based simulation technique, called peri-elastodynamics, are presented while simulating the guided Lamb wave propagation and wave–damage interaction for ultrasonic nondestructive evaluation and structural health monitoring applications. Peri-elastodynamics is a recently developed elastodynamic computation tool where material particles are assumed to interact with the neighboring particles nonlocally, distributed within an influence zone. First, in this article, peri-elastodynamics was used to simulate the Lamb wave modes and their interactions with the damages in a three-dimensional plate-like structure, while the accuracy and the efficacy of the method were verified using the finite element simulation method (FEM). Next, the peri-elastodynamics results were validated with the experimental results, which showed that the newly developed method is more accurate and computationally cheaper than the FEM to be used for computational nondestructive evaluation and structural health monitoring. Specifically, in this work, peri-elastodynamics was used to accurately simulate the in-plane and out-of-plane symmetric and anti-symmetric guided Lamb wave modes in a pristine plate and was extended to investigate the wave–damage interaction with damage (e.g. a crack) in the plate. Experiments were designed keeping all the simulation parameters consistent. The accuracy of the proposed technique is confirmed by performing error analysis on symmetric and anti-symmetric Lamb wave modes compared to the experimental results for pristine and damaged plates.


1988 ◽  
Vol 90 (1-2) ◽  
pp. 247-263 ◽  
Author(s):  
Charles J. Brokaw

Author(s):  
David Siler ◽  
Ben Cooper ◽  
Chris White ◽  
Stephen Marinsek ◽  
Andrei Zagrai ◽  
...  

The paper presents the design, development, and assembly of Structural Health Monitoring (SHM) experiments intended to be launch in space on a sub-orbital rocket flight as well as a high altitude balloon flight. The experiments designed investigate the use of both piezoelectric sensing hardware in a wave propagation experiment and piezoelectric wafer active sensors (PWAS) in an electromechanical impedance experiment as active elements of spacecraft SHM systems. The list of PWAS experiments includes a bolted-joint test and an experiment to monitor PWAS condition during spaceflight. Electromechanical impedances of piezoelectric sensors will be recorded in-flight at varying input frequencies using an onboard data acquisition system. The wave propagation experiment will utilize the sensing hardware of the Metis Design MD7 Digital SHM system. The payload will employ a triggering system that will begin experiment data acquisition upon sufficient saturation of g-loading. The experiment designs must be able to withstand the harsh environment of space, intense vibrations from the rocket launch, and large shock loading upon re-entry. The paper discusses issues encountered during design, development, and assembly of the payload and aspects central to successful demonstration of the SHM system during both the sub-orbital space flight and balloon launch.


2019 ◽  
Vol 9 (21) ◽  
pp. 4600 ◽  
Author(s):  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Christian Boller ◽  
Jens Prager

Guided waves (GW) are of great interest for non-destructive testing (NDT) and structural health monitoring (SHM) of engineering structures such as for oil and gas pipelines, rails, aircraft components, adhesive bonds and possibly much more. Development of a technique based on GWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to the dispersion and multimodal character of GWs. The Scaled Boundary Finite Element Method (SBFEM) is a suitable numerical approach for this purpose allowing calculation of dispersion curves, mode shapes and GW propagation analysis. In this article, the SBFEM is used to analyse wave propagation in a plate consisting of an isotropic aluminium layer bonded as a hybrid to an anisotropic carbon fibre reinforced plastics layer. This hybrid composite corresponds to one of those considered in a Type III composite pressure vessel used for storing gases, e.g., hydrogen in automotive and aerospace applications. The results show that most of the wave energy can be concentrated in a certain layer depending on the mode used, and by that damage present in this layer can be detected. The results obtained help to understand the wave propagation in multi-layered structures and are important for further development of NDT and SHM for engineering structures consisting of multiple layers.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Songlai Wang ◽  
Wanrong Wu ◽  
Yiping Shen ◽  
Hui Li ◽  
Binlong Tang

Directional piezoelectric sensors can detect the Lamb wave propagation direction to locate damage in structural health monitoring (SHM). The directivity of the round piezoelectric fiber is exploited with a 0°/45°/90° rosette configuration to acquire flexural Lamb wave signals. The directional response of the piezoelectric fiber under narrowband tone-burst excitation is theoretically deduced. Experimental tests are conducted to demonstrate the directivity and the frequency response property of the piezoelectric fiber under different excitation central frequencies in comparison with the MFC, rectangular piezoelectric sheet, and circular piezoelectric disc. Continuous wavelet transform (CWT) is applied to extract the maximum response amplitude information of the acquired Lamb wave signal at a central frequency. Experimental test results indicate that the piezoelectric fiber is capable to be used as a Lamb wave directional sensor than other piezoelectric sensors. A numerical estimation method for the Lamb wave propagation direction is proposed by defining an error function between the theoretical and experimental normalized response amplitude. The proposed method is generally applicable for different rosette configurations. Experimental results validate the accuracy of the proposed estimation method. The research results are significant to design or select the piezoelectric sensor to measure Lamb wave signals.


Sign in / Sign up

Export Citation Format

Share Document