scholarly journals An Analytical Study of Insertion Effects of 2-D Microphone Array to Measured Sound Field(Mechanical Systems)

2009 ◽  
Vol 75 (749) ◽  
pp. 141-149
Author(s):  
Shun-ichi OHSHIMA ◽  
Haruo HOUJOH
1975 ◽  
Vol 97 (4) ◽  
pp. 1166-1174 ◽  
Author(s):  
S. Dubowsky ◽  
S. C. Young

The increases in the dynamic forces within the connections of high-speed mechanical systems due to connection clearances and mechanism elasticity are of great interest to design engineers. These forces, which can play a dominant role in the performance and life of these systems, are experimentally studied in this investigation, and the observed experimental behavior is correlated with the results of analytical predictions. The experiments performed confirm the importance of clearances in machine joints on the amplification of connection forces. The effects of connection friction and mechanism elasticity on the connection forces are also investigated.


2016 ◽  
Vol 140 (4) ◽  
pp. 2966-2966
Author(s):  
Cesar D. Salvador ◽  
Shuichi Sakamoto ◽  
Jorge Trevino ◽  
Yôiti Suzuki

Author(s):  
Michael Bartelt ◽  
Juan D. Laguna ◽  
Joerg R. Seume

One of the greatest challenges in modern aircraft propulsion design is the reduction of the engine noise emission in order to develop quieter aircrafts. In the course of a current research project, the sound transport in low pressure turbines is investigated. For the corresponding experimental measurements, a specific acoustic excitation system is developed which can be implemented into the inlet of a turbine test rig and into an aeroacoustic wind tunnel. This allows for an acoustic mode generation and a synthesis of various sound source patterns to simulate typical turbomachinery noise sources such as rotor-stator interaction, etc. The paper presents the acoustical and technical design methodology in detail and addresses the experimental options of the system. Particular attention is paid to the design and the numerical optimization of the acoustic excitation units. To validate the sound generator during operation, measurements are performed in an aeroacoustic wind tunnel. For this purpose, an in-duct microphone array with a specific beamforming algorithm for hard-walled ducts is developed and applied to identify the source locations. The synthetically excited sound fields and the propagating acoustic modes are measured and analyzed by means of modal decomposition techniques. The measurement principles and the results are discussed in detail and it is shown that the intended sound source is produced and the intended sound field is excited. This paper shall contribute to help guide the development of excitation systems for aeroacoustic experiments to better understanding the physics of sound propagation within turbomachines.


2012 ◽  
Vol 233 ◽  
pp. 239-242
Author(s):  
Xiao Feng Zhang ◽  
You Gang Xiao ◽  
He Lian Deng ◽  
Jian Feng Huang

Using microphone and removable planar microphone array, the exterior and interior vehicle noise near pantograph were investigated when the train ran at 250-350km/h, the noise spectrum characters of these areas were obtained. The results show that at the pantograph seat and in the vehicle below pantograph, the noise spectrum show a broad band distribution, and the noise energy is mainly concentrated within the range of 100Hz-2kHz. Interior vehicle noise below pantograph is a non-uniform reverberant sound field, the regions with larger sound pressure level (SPL) are distributed near the roof, the floor, the side wall below the luggage. For reducing interior vehicle noise below pantograph, such measures as using low noise pantograph, adding sound insulation pad, filling sound absorption materials and improving sealing performance should be taken, and these measures should be effective at 100Hz-2kHz.


Author(s):  
Johannes M. Arend ◽  
Tim Lübeck ◽  
Christoph Pörschmann

AbstractHigh-quality rendering of spatial sound fields in real-time is becoming increasingly important with the steadily growing interest in virtual and augmented reality technologies. Typically, a spherical microphone array (SMA) is used to capture a spatial sound field. The captured sound field can be reproduced over headphones in real-time using binaural rendering, virtually placing a single listener in the sound field. Common methods for binaural rendering first spatially encode the sound field by transforming it to the spherical harmonics domain and then decode the sound field binaurally by combining it with head-related transfer functions (HRTFs). However, these rendering methods are computationally demanding, especially for high-order SMAs, and require implementing quite sophisticated real-time signal processing. This paper presents a computationally more efficient method for real-time binaural rendering of SMA signals by linear filtering. The proposed method allows representing any common rendering chain as a set of precomputed finite impulse response filters, which are then applied to the SMA signals in real-time using fast convolution to produce the binaural signals. Results of the technical evaluation show that the presented approach is equivalent to conventional rendering methods while being computationally less demanding and easier to implement using any real-time convolution system. However, the lower computational complexity goes along with lower flexibility. On the one hand, encoding and decoding are no longer decoupled, and on the other hand, sound field transformations in the SH domain can no longer be performed. Consequently, in the proposed method, a filter set must be precomputed and stored for each possible head orientation of the listener, leading to higher memory requirements than the conventional methods. As such, the approach is particularly well suited for efficient real-time binaural rendering of SMA signals in a fixed setup where usually a limited range of head orientations is sufficient, such as live concert streaming or VR teleconferencing.


Sign in / Sign up

Export Citation Format

Share Document