1A2-G10 Measurement of Dozens of μsec Order on Sound Pressure Propagation : Development of Sound Field Measuring System with a Linear 64ch Microphone Array

2007 ◽  
Vol 2007 (0) ◽  
pp. _1A2-G10_1-_1A2-G10_2
Author(s):  
Yuki OHTOMO ◽  
Tomohiro OGAWA ◽  
Hiroshi TAKEMURA ◽  
Hiroshi MIZOGUCHI
2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Min Li ◽  
Long Wei ◽  
Qiang Fu ◽  
Debin Yang

In sound field reconstruction, spurious sources called ghost images always appear around the position of the real sound source in the sound pressure distribution map because of the grating and side lobes, thus resulting in an incorrect identification of the sound source. To solve this problem, a method for suppressing ghost images is proposed in this paper; such method is based on particle swarm optimization (PSO) and minimum variance distortionless response (MVDR) beamforming. In this method, the elements distribution of a microphone array is first optimized by the PSO algorithm to acquire the optimal design of an unequal spacing microphone array. With this array, the grating lobe is suppressed, and the increscent value of the inherent side lobe value is reduced. Second, MVDR algorithm is used to weaken the effect of the side lobes and to obtain a sound pressure distribution map in which the ghost images are suppressed. The advantage of this method is the combination of the unequal spacing array, which suppresses the grating lobe, and the MVDR algorithm, which has excellent performance in spatial filtering. Through this method, a microphone array with a few number of elements can achieve ghost image suppression. Experiments on sound field reconstruction in an anechoic chamber for a single-tone sound source are conducted to validate the proposed method. Moreover, some extra sound field reconstructions for a single-tone sound source and double sound sources with broadband in a normal room with different parameters such as the array shape and distance from the sources to the array are conducted to discuss their influences on the effectiveness of the proposed method.


2019 ◽  
Vol 67 (3) ◽  
pp. 190-196
Author(s):  
Ning Han

Based on a prediction method of the scattered sound pressure, an active control system was proposed in previous work for the three-dimension scattered radiation, where all the relevant simulations and experiments were implemented in three-dimensional free sound field. However, for practical applications, such as the anti-eavesdropping system or the stealth system for submarines, the sound field conditions are usually complex, and the most common case is the one with reflecting surface. It is questionable whether the previous control system is still effective in non-free sound field, or what improvements should be operated to ensure the control effect. In this article, based on the mirror image principle, two methods of calculating the control source strengths are proposed for the scattered radiation control, and numerical simulations with one-channel and multi-channel system are implemented to detect the corresponding control effect. It is seen that the local active control for the scattered radiation is still effective, and the reduction of the sound pressure level as well as the control area is extended with the increasement of the error sensors and control sources.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2747
Author(s):  
Xiangwen Ju ◽  
Jun Xiao ◽  
Dongli Wang ◽  
Cong Zhao ◽  
Xianfeng Wang

The stringer-stiffened structure is widely used due to its excellent mechanical properties. Improving the manufacturing quality of stringer-stiffened structure which have complex geometry is important to ensure the bearing capacity of aviation components. Herein, composite hat-stiffened composite structures were manufactured by different filling forms and bladders with various properties, the deformation of silicone rubber bladder in co-curing process was studied by using the finite element method. The thickness measurement at different positions of the hat-stiffened structure was performed to determine the best filling form and bladder property. Moreover, in view of the detection difficulties in R-zone of stringer, numerical simulation was performed to get the sound pressure and impulse response of at the R-zone of stringer by Rayleigh integration method, and an effective equipment which could stably detect the manufacturing quality of R-zone was designed to verify the correctness of sound field simulation and realize the detection of stringer. With the optimum filling form and bladder properties, hat-stiffened composites can be manufactured integrally with improved surface quality and geometric accuracy, based on co-curing process.


Author(s):  
Yajing Wang ◽  
Liqun Wu ◽  
Yaxing Wang ◽  
Yafei Fan

A new method of removing waste chips is proposed by focusing on the key factors affecting the processing quality and efficiency of high energy beams. Firstly, a mathematical model has been established to provide the theoretical basis for the separation of solid–liquid suspension under ultrasonic standing wave. Secondly, the distribution of sound field with and without droplet has been simulated. Thirdly, the deformation and movement of droplets are simulated and tested. It is found that the sound pressure around the droplet is greater than the sound pressure in the droplet, which can promote the separation of droplets and provide theoretical support for the ultrasonic suspension separation of droplet; under the interaction of acoustic radiation force, surface tension, adhesion, and static pressure, the droplet is deformed so that the gas fluid around the droplet is concentrated in the center to achieve droplet separation, and the droplet just as a flat ball with a central sag is stably suspended in the acoustic wave node.


2012 ◽  
Vol 195-196 ◽  
pp. 364-369 ◽  
Author(s):  
Jin Hua Zhao ◽  
Li Li Yu ◽  
Chun Hui ◽  
Bin Feng Huang ◽  
Chao Li ◽  
...  

In this paper, numerical simulation of sound field with short focal length is performed, which is based on spheroidal beam equation (SBE) in frequency-domain for transducer with a wide aperture angle. And we made some experiments on vitro bovine liver to explore the characteristic of sound pressure and-3dB sound focal region at different positions of incident interface. It is found that with a fixed curvature radius if the focal length is shorter under the skin, the amplitude of sound pressure will be higher on the focus and the shape of-3dB sound focal region will be smaller. When the incident interface is in the range of planar wave, nonlinear effect is strong and the focus will change with the interface position. Especially when the position is near to transition location between planar wave and spheroidal wave, the nonlinear effect is lowered. While the focus is closer to the sound source so as to burn the scarfskin easily. When the interface is in the range of spheroidal wave, the focus position changes little but the side lobe effect due to refraction is obvious. And the focusing performance of transducer will be affected. The experimental results validate the accuracy of theoretical results. It is concluded that the position of incident interface should be selected reasonably with short focal length in the treatment of superficial tissue.


Author(s):  
Ying-Hui Jia ◽  
Fang-Fang Li ◽  
Kun Fang ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractRecently strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. Based on the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with Sound Pressure Level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. The droplet smaller than 40μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100Hz (@ 123.4dB) or the Sound Pressure Level (SPL) is greater than 117.4dB (@ 50Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides theoretical perspective of acoustic effect to the microphysics of atmospheric clouds.


2013 ◽  
Vol 681 ◽  
pp. 200-203 ◽  
Author(s):  
Lei Zhang ◽  
Zhi Yong Hao

In the research of the automobile front dash, the key of design is that acoustic need should be satisfied while losing the weight. In this paper, a structure-sound field coupling model of car body space is built. To fulfill the request, the dash panel is divided into several parts, and the sensitivity of thickness of each parts to the sound at the position of driver’s and co-pilot’s ears is calculated. Based on the sensitivity, the driver’s and the co-pilot’s parotic sound pressure is optimized while reducing the weight of front dash. The result proves that lightweight design is successful, which gives the reference to the design of the car body panels.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bichun Dong ◽  
Runmei Zhang ◽  
Chuanyang Yu ◽  
Huan Li

Sound field prediction has practical significance in the control of noise generated by sources in a flow, for example, the noise in aero-engines and ventilation systems. Aiming at accurate and flexible prediction of time-dependent sound field, a finite-difference wavenumber-time domain method for sound field prediction in a uniformly moving medium is proposed. The method is based on the second-order convective wave equation, and the wavenumber-time domain representation of the sound pressure field on one plane is forward propagated via a derived recursive expression. In this paper, the recursive expression is first deduced, and then numerical stability and dispersion of the proposed method are analyzed, based on which the stability condition is given and the correction of dispersion related to the transition frequency is made. Numerical simulations are conducted to test the performance of the proposed method, and the results show that the method is valid and robust at different Mach numbers.


Sign in / Sign up

Export Citation Format

Share Document