scholarly journals Influence of higher orders of Neumann expansion on accuracy of stochastic linear elastic finite element method with random physical parameters

2020 ◽  
Vol 6 (0) ◽  
pp. 20-00228-20-00228
Author(s):  
Lucas DEGENEVE ◽  
Naoki TAKANO
2009 ◽  
Vol 46 (6) ◽  
pp. 627-638 ◽  
Author(s):  
Nainan P. Kurian ◽  
Syed J. Shah

A circular pile with helical blades is an old type of foundation, which has staged a comeback recently and is being used in a variety of situations. Most of the research on helical screw piles has been experimental or theoretical with the help of simplifying assumptions. The method of design adopted so far treats this pile as an annular plate, disregarding the intricacies of the geometry of the helix. It is only the versatility of the finite element method that can take into account the actual geometry of a spatial structure such as the helical blade at a microlevel. This is perhaps the first attempt at such an analysis to study the response of the helical screw pile within the elastic and nonlinear ranges. While the pile is linearly elastic, soil is considered both as a linear elastic medium and as an elastic–plastic medium following the Drucker–Prager constitutive model. Cases of smooth contact and frictional contact between soil and screw pile are also considered. Screw piles are studied under compressive, tensile, and lateral loading conditions. Moreover, their performance is compared with that of prismatic piles. A parametric study has also been attempted on some key geometrical features of the screw pile.


1999 ◽  
Vol 123 (3) ◽  
pp. 218-224 ◽  
Author(s):  
Cemal Basaran ◽  
Ying Zhao

Multi-layered stacks are commonly used in microelectronic packaging. Traditionally, these systems are designed using linear-elastic analysis either with analytical solutions or finite element method. Linear-elastic analysis for layered structures yields very conservative results due to stress singularity at the free edge. In this paper, it is shown that a damage mechanics based nonlinear analysis not just leads to a more realistic analysis but also provides more accurate stress distribution. In this paper these two approaches are compared. Moreover, mesh sensitivity of the finite element analysis in stack problems is studied. It is shown that the closed form and elastic finite element analyses can only be used for preliminary studies and elastic finite element method is highly mesh sensitive for this problem. In elastic analysis the stress singularity at the free edge makes mesh selection very difficult. Even when asymptotic analysis is used at the free edge, the results are very conservative compared to an inelastic analysis. Rate sensitive inelastic analysis does not suffer from the stress singularity and mesh sensitivity problems encountered in elastic analysis.


2007 ◽  
Vol 3 (1) ◽  
Author(s):  
Edela Puricelli ◽  
Jun Sérgio Ono Fonseca ◽  
Marcel Fasolo de Paris ◽  
Hervandil Sant'Anna

2021 ◽  
Vol 263 ◽  
pp. 02023
Author(s):  
Alexey Plotnikov ◽  
Mikhail Ivanov

The use of monitoring techniques during the operation of a building contributes to the study of the stress-strain state of both known and newly developed structural systems. The article discusses the effect of reducing the bending stiffness of reinforced concrete crossbars of high-rise buildings on the overall deformability, which can be monitored by changing the angles of rotation at characteristic points. For the introduction into the model of the calculation based on finite elements of the physical parameters of the stiffness of reinforced concrete bending elements, the function of the change in the shoulder of a pair of forces in the section during the opening of normal cracks is given. Empirical data on changes in the stress unevenness coefficient along the length of the reinforcing bar are used. The calculation is based on the diagrammatic method. The data on the accumulated experience of measuring the angles of rotation of a building with automatic monitoring of buildings are presented. Using the finite element method, the systems were simulated with a decrease in stiffness to 0.4 from the initial one. It is shown that it is possible to select a range of sensors - angle meters - inclinometers. It has been determined that the angle of rotation can be changed up to 1.6 times. The corresponding ranges are defined for two types of frameworks: frame and frame-braced. The nature of the change in the overall stiffness of the building frame as a result of reducing the stiffness of the crossbars is shown. Calculation models based on the finite element method determined the deformation limits of the entire frame as a whole.


Sign in / Sign up

Export Citation Format

Share Document