scholarly journals A study on fundamental water lubrication characteristics of flat thrust bearing with partial water-repellent regions

Author(s):  
Akitoshi TAKEUCHI
2018 ◽  
Vol 70 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Jun-peng Shao ◽  
Guang-dong Liu ◽  
Xiao-dong Yu ◽  
Yan-qin Zhang ◽  
Xiu-li Meng ◽  
...  

Purpose The purpose of this paper is to describe a simulation and experimental research concerning the effect of recess depth on the lubrication performance of a hydrostatic thrust bearing by constant rate flow. Design/methodology/approach The computational fluid dynamics and finite volume method have been used to compute the lubrication characteristics of an annular recess hydrostatic thrust bearing with different recess depths. The performances are oil recess pressure, oil recess temperature and oil film velocity. The recess depth has been optimized. A test rig is established for testing the pressure field of the structure of hydrostatic thrust bearing after recess depth optimization, and experimental results show that experimental data are basically identical with the simulation results, which demonstrates the validity of the proposed numerical simulation method. Findings The results demonstrate that the oil film temperature decreases and the oil film pressure first increases and then decreases with an increase in the recess depth, but oil film velocity is constant. To sum up comprehensive lubrication performance, the recess depth of 3.5 mm is its optimal value for the annular recess hydrostatic thrust bearing. Originality/value The computed results indicate that to get an improved performance from a constant flow hydrostatic thrust bearing, a proper selection of the recess depth is essential.


2021 ◽  
Vol 11 (21) ◽  
pp. 9920
Author(s):  
Jia Xie ◽  
Chengyu Peng ◽  
Wenshan Zhang ◽  
Cun Zhao ◽  
Quanke Feng

Water-lubricated single-screw compressors (WSSCs) have developed rapidly in recent years because they can supply oil-free compressed air at considerably low costs. However, a major technical obstacle is that the conventional bearing arrangement of a star wheel shaft is prone to wear failure, which makes it difficult for WSSCs to run properly for long periods of time. To solve this problem, a star wheel thrust bearing with new liquid groove was proposed in this paper. Pulsating forces (i.e., bearing forces) acting on a star wheel shaft by compressing air were calculated through the dynamic analysis of the star wheel shaft system. A mathematical model of hydraulic water films in the bearing sliding clearance was established to describe the influence of water injection pressure on water film pressure distribution and its bearing capacity. Lubrication characteristics were compared between two types of hydrostatic thrust bearings (HTBs) with different grooves to illustrate that the new structure is more suitable for WSSCs. The reasonability of the proposed model and simulation results were verified using an axial thrust bearing test rig developed by the authors. In addition, variation parameters of hydrostatic film thickness between the sliding surfaces of the star wheel axial thrust bearing were measured. The results show that the instability of the water film thickness and axial vibration of the star wheel were suppressed, thereby avoiding the contact of solid materials between the end face of the axial thrust bearing. This study provides a structural optimization pattern of star wheel axial thrust bearings used in water-lubricated single-screw compressors.


Sign in / Sign up

Export Citation Format

Share Document