scholarly journals Experimental and Simulated Investigation of Lubrication Characteristics of a Water-Lubricated Bearing in a Single-Screw Compressor

2021 ◽  
Vol 11 (21) ◽  
pp. 9920
Author(s):  
Jia Xie ◽  
Chengyu Peng ◽  
Wenshan Zhang ◽  
Cun Zhao ◽  
Quanke Feng

Water-lubricated single-screw compressors (WSSCs) have developed rapidly in recent years because they can supply oil-free compressed air at considerably low costs. However, a major technical obstacle is that the conventional bearing arrangement of a star wheel shaft is prone to wear failure, which makes it difficult for WSSCs to run properly for long periods of time. To solve this problem, a star wheel thrust bearing with new liquid groove was proposed in this paper. Pulsating forces (i.e., bearing forces) acting on a star wheel shaft by compressing air were calculated through the dynamic analysis of the star wheel shaft system. A mathematical model of hydraulic water films in the bearing sliding clearance was established to describe the influence of water injection pressure on water film pressure distribution and its bearing capacity. Lubrication characteristics were compared between two types of hydrostatic thrust bearings (HTBs) with different grooves to illustrate that the new structure is more suitable for WSSCs. The reasonability of the proposed model and simulation results were verified using an axial thrust bearing test rig developed by the authors. In addition, variation parameters of hydrostatic film thickness between the sliding surfaces of the star wheel axial thrust bearing were measured. The results show that the instability of the water film thickness and axial vibration of the star wheel were suppressed, thereby avoiding the contact of solid materials between the end face of the axial thrust bearing. This study provides a structural optimization pattern of star wheel axial thrust bearings used in water-lubricated single-screw compressors.

1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


2021 ◽  
Author(s):  
Fangcheng Xu ◽  
Jianhua Chu ◽  
Wenlin Luan ◽  
Guang Zhao

Abstract In this paper, single-bump foil models with different thickness and double-bump foil models with different initial clearances are established. The structural stiffness and equivalent viscous damping of double-bump foil and single-bump foil are analyzed by finite element simulation. The results show that the double-layer bump foil has variable stiffness and the displacement of the upper bump is greater than the initial gap when the two-layer bumps contact. A model for obtaining static characteristics of aerodynamic compliant foil thrust bearing is established on the basis of the stiffness characteristics of the double-bump foil. This paper solves gas Reynolds equation, the gas film thickness equation and the foil stiffness characteristic equation via the finite element method and the finite difference method. The static characteristics of the thrust bearings including the bearing pressure distribution, the gas film thickness and the friction power consumption have been obtained. The static characteristics of two kinds of foils have been compared and analyzed, and the effect of initial clearance on the static performance of double-bump foil bearings is studied. The results show that the double-bump foil structure can effectively improve the load capacity of thrust bearing. In addition, the static performance of double-bump foil thrust bearings is between the performance of the single-bump foil bearing and the double-bump foil bearing whose foil’s clearance is zero. The smaller the initial clearance is, the easier it will be to form a stable double-bump foil supporting structure.


Author(s):  
Magnus Fischer ◽  
Andreas Mueller ◽  
Benjamin Rembold ◽  
Bruno Ammann

In this paper we present a novel method for the numerical simulation of flow in a hydrodynamic thrust bearing with floating disk. Floating disks are commonly employed in turbochargers and are situated between the thrust collar, which is rotating at turbocharger speed, and the static casing. A floating disk reduces wear, improves the skew compensating capacity of the bearing, and is freely movable in the axial direction. The simulation model presented combines a commercial flow solver (ANSYS CFX) with a control unit. Based on physical principles and a predefined axial thrust, the control unit automatically sets the rotational speed of the floating disk, the mass flow of the oil supply, and the oil film thickness between the rotating disk and the casing wall and collar, respectively. The only additional inputs required are the temperature and the pressure of the oil at the oil feed and the turbocharger speed. The width of the computational grid of the thin lubricating oil film in the gaps is adjusted using a mesh-morphing approach. The temperature-dependent variation in viscosity is included in the model. The calculated solution of the flow field in the domain, the oil film thickness, and the resulting rotational velocity of the floating disk are validated against experimental data and demonstrate favorable agreement. The influence of uncertainties in the measurements and the behavior of the systems are thoroughly investigated in parametric studies that reveal the key influencing factors. These are the temperature-dependent viscosity of the oil, the axial thrust, and turbulence effects in the supply grooves and ducts of the floating disk. Using the model presented here, it is now possible to predict design variants for this type of bearing.


1987 ◽  
Vol 109 (3) ◽  
pp. 395-401 ◽  
Author(s):  
A. Artiles ◽  
H. Heshmat

A method of analysis is described treating starvation in finite thrust bearing pads. A variable-size finite difference mesh is used to represent the two-dimensional temperature and pressure fields. A combination of Newton-Raphson iteration, direct iteration, and column matrix methods are used to solve for the start-of-film and minimum film thickness as well as the coupled two-dimensional energy and Reynolds equations. A parametric study describes the performance characteristics of the tapered land thrust bearing (flowrates, extent of fluid film, temperature rises, load capacity and torque) for different minimum film thicknesses and levels of starvation. This study considered variations in the geometrical parameters such as pad aspect ratio (L/R2=1/3, 1/2, 2/3) and extent of the pad (β=27, 42, and 57 deg) with an optimum taper ratio (β1/β=0.8). It is found that the effects of starvation are fairly small near the flooded condition but accelerate rapidly below the 50 percent starvation level. The start of the film (θ1) depends mostly on the level of starvation, and is essentially independent of the geometrical parameters, operating conditions or film thickness.


Author(s):  
Yanfeng Han ◽  
Guo Xiang ◽  
Jiaxu Wang

Abstract The mixed lubrication performance of water-lubricated coupled journal and thrust bearing (simplified as coupled bearing) is investigated by a developed numerical model. To ensure the continuity of hydrodynamic pressure and flow at the common boundary between the journal and thrust bearing, the conformal transformation is introduced to unify the solution domain of the Reynolds equation. In the presented study, the coupled effects between the journal and thrust bearing are discussed. The effects of the thrust bearing geometric film thickness on the mixed lubrication performance, including the load capacity, contact load and friction coefficient, of the journal bearing are investigated. And the effects of the journal bearing eccentricity ratio on the mixed lubrication performance of the thrust bearing are also investigated. The simulated results indicate the mutual effects between the journal and thrust bearing cannot be ignored in the coupled bearing system. The increasing thrust bearing geometric film thickness generates a decrease in load capacity of journal bearing. There exists an optimal eccentricity ratio of journal bearing that yields the minimum friction coefficient of the thrust bearing.


Author(s):  
Jianbo Zhang ◽  
Chunxiao Jiao ◽  
Donglin Zou ◽  
Na Ta ◽  
Zhushi Rao

The solution of Reynolds equation and computational fluid dynamics are widely employed for the lubrication performance analysis of aerostatic thrust bearing. However, the solution of Reynolds equation may be inaccurate and cannot present detailed performance near orifice, while computational fluid dynamics method has low computational efficiency with time consumption in mesh generation and solving Navier–Stokes equations. In order to overcome the drawbacks of Reynolds equation and computational fluid dynamics, based on the method of separation of variables, a semianalytical method is developed for describing the characteristics of aerostatic bearings available. The method of separation of variables considering the initial and viscous effect is more accurate than the Reynolds equation and can present detailed performance near orifice in the aerostatic thrust bearings, while method of separation of variables has great computational efficiency compared to computational fluid dynamics. Meanwhile, the pressure distribution calculated by method of separation of variables is compared to the published experimental data and the results obtained by computational fluid dynamics. The comparative results indicate validity of the method. Furthermore, the influences of flow and geometry parameters, such as supply pressure, orifice diameter, film thickness, and bearing radius, on the characteristics of aerostatic thrust bearings with single orifice are studied. The results show that there exists pressure depression phenomenon near orifice. The depression phenomenon is strengthened with increase of film thickness and supply pressure and decrease of orifice diameter and bearing radius, while the maximum speed increases with strengthening of pressure depression due to decrease of minimum local pressure near orifice. Moreover, the bearing capacity increases with increase of supply pressure, orifice diameter, and bearing radius and decreases with increase of film thickness, while mass flow rate increases with supply pressure, orifice diameter, and film thickness and it is not sensitive to bearing radius.


2010 ◽  
Vol 44-47 ◽  
pp. 1666-1671 ◽  
Author(s):  
Lin Liu Zheng ◽  
Zhu Xin Wu

The affect of the thrust pad inclination and ratio of length to breadth (L/B) on the lubricity of a water-lubricated thrust bearing is studied in numerical method. The research results indicate that when the elastic deformation is considered, the distribution of both water film thickness and pressure presents to be paraboloid. With the increase of thrust pad inclination, both maximum water-film pressure and the friction coefficient increase, and the minimum water-film thickness decreases first and then increases; when the L/B increases in the range of 1~2, both maximum water-film pressure and the friction coefficient increase, but the minimum water-film thickness decreases.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Gang Liu ◽  
Ming Li

Abstract Water-lubricated rubber bearings are widely used in the propulsion shafting of military craft and ships. These bearings may wear down after a period of service, and consequently, their lubrication characteristics will change, affecting the operation of the shaft. Hydrodynamic lubrication characteristics of water-lubricated rubber bearings with partial wear at the bottom are studied by finite difference method. The steady-state characteristics of water-lubricated rubber bearings with wear and elastic deformation of rubber liner considered are solved with successive over-relaxation iteration method, and the dynamic characteristics are further calculated with finite perturbation method. The results show that water film thickness and distribution of water film pressure is significantly changed by wear. With the same eccentricity ratio, the maximum water film pressure, load capacity, attitude angle, and friction force are reduced by wear, but the friction coefficient is increased by wear. Under the same load, the minimum water film thickness and the maximum water film pressure are slightly affected by wear, the eccentricity ratio increases with the increase of wear, and the attitude angle and the friction coefficient decrease with the increase of wear. For large eccentricity ratios, the direct stiffness coefficients and direct damping coefficients are decreased by wear. The maximum allowable wear depth is approximately 1/6 of the bearing clearance.


Author(s):  
Magnus Fischer ◽  
Andreas Mueller ◽  
Benjamin Rembold ◽  
Bruno Ammann

In this paper we present a novel method for the numerical simulation of flow in a hydrodynamic thrust bearing with floating disk. Floating disks are commonly employed in turbochargers and are situated between the thrust collar, which is rotating at turbocharger speed, and the static casing. A floating disk reduces wear, improves the skew compensating capacity of the bearing and is freely movable in the axial direction. The simulation model presented combines a commercial flow solver (ANSYS CFX) with a control unit. Based on physical principles and a predefined axial thrust, the control unit automatically sets the rotational speed of the floating disk, the mass flow of the oil supply and the oil film thickness between the rotating disk and the casing wall and collar respectively. The only additional inputs required are the temperature and the pressure of the oil at the oil feed and the turbocharger speed. The width of the computational grid of the thin lubricating oil film in the gaps is adjusted using a mesh-morphing approach. The temperature-dependent variation in viscosity is included in the model. The calculated solution of the flow field in the domain, the oil film thickness and the resulting rotational velocity of the floating disk are validated against experimental data and demonstrate favorable agreement. The influence of uncertainties in the measurements and the behavior of the systems are thoroughly investigated in parametric studies which reveal the key influencing factors. These are the temperature-dependent viscosity of the oil, the axial thrust and turbulence effects in the supply grooves and ducts of the floating disk. Using the model presented here, it is now possible to predict design variants for this type of bearing.


Sign in / Sign up

Export Citation Format

Share Document