Effect of Cattle Manure Application on the Gaseous Regime of a Sandy Soil

2005 ◽  
Vol 27 (1) ◽  
pp. 51-70
Author(s):  
M. S. Hossain ◽  
S. F. Barrington ◽  
N. N. Barthakur
Author(s):  
Liina Edesi ◽  
Malle Järvan ◽  
Merrit Noormets ◽  
Enn Lauringson ◽  
Ando Adamson ◽  
...  

2016 ◽  
pp. 23-28
Author(s):  
Andrea Balláné Kovács ◽  
Rita Kremper ◽  
Ida Kincses ◽  
Ágnes Leviczky

A greenhouse pot experiment was conducted to compare the effects of manure with different origin (horse, cattle), various bedding materials (straw, sawdust) and diverse doses (30 t ha-1, 60 t ha-1) and the impact of food waste compost on the plant growth and the available plant nutrient content of soil. The study was conducted on humic sandy soil and consisted of 9 treatments in a randomized complete block design with four replications. Spinach (Spinacia oleracea L.) was grown as the test crop. The treatments were: 1. unfertilized control; 2. horse manure with straw (30 t ha-1); 3. horse manure with sawdust (30 t ha-1); 4. cattle manure (30 t ha-1); 5 food waste compost (30 t ha-1); 6. horse manure with straw (60 t ha-1); 7. horse manure with sawdust (60 t ha-1); 8. cattle manure (60 t ha-1); 9. food waste compost (60 t ha-1). Plant growth was monitored for 4 weeks. Shoot and root weights per pot were measured, total biomass weight per pot were counted. On the basis of the results it can be concluded, that among treatments the application of horse manure with straw enhanced spinach growth most significantly compared to other treatments and to the non-treated control, resulted the highest weights of leaves and roots of spinach. At the same time even small dose (30 t ha-1) of this fertilizer caused increased plant available nitrogen and phosphorus of soil and the higher dosage further increased these values. The horse manure with sawdust applied in lower dose did not alter the leaves and roots weights, but higher portion (60 t ha-1) caused significantly decreased plant biomass. The results proved that the bedding material may significantly alter the composition of manure and may change the plant nutrition effect of organic fertilizer. Cattle manure and food waste compost in both applied doses enhanced plant growth. Both fertilizers increased the plant available nitrogen forms and phosphorus content of soil, but cattle manure caused higher increase.


2005 ◽  
Vol 85 (5) ◽  
pp. 589-597 ◽  
Author(s):  
Chi Chang, Joann K. Whalen ◽  
Xiying Hao

Migration of P from soils to water resources poses a risk of surface water eutrophication, and increase in P concentration in soils through manure or fertilizer addition would exace rbate this problem. Investigating the rate of increase in P concentration of surface soil receiving livestock manure is crucial to the development of best manure management strategies and prevention of eutrophication of aquatic systems. In this study, the changes in P concentrations of surface soils (0- to 15-cm depth) receiving 25 annual manure applications at rates of 0, 30, 60 and 90 Mg ha-1 yr-1 under non-irrigated conditions and at rates of 0, 60, 120 and 180 Mg ha-1 yr-1 under irrigated conditions were examined. The soil test P (STP) and total P (TP) of the surface soil increased with the TP through manure application over a 25-yr period. The STP pool was about 38% of the soil TP pool, similar to ratios of STP to TP in feedlot cattle manure. While the high proportion of STP to TP could be beneficial for crop production, it could also increase the potential for P losses from these soils through runoff and leaching. The changes in TP and STP concentrations of the surface soil were modelled with an expone ntial rise to maximum function: TP = 0.69 + 5.06 (1 − e(−0.087x)) and STP = 0.029 + 2.21 (1 − e(−0.082x)) where x is the cumulative TP applied. Although the model was developed for a specific soil and type of manure, it could be adapted to other soils or manure sources by adjusting the model coefficients for the particular soil and/or manure type. These adjustments would not require as extensive a data set as was required to develop the original model. This model could be used to determine the amount of TP that could be applied for a given critical STP. Producers, regulatory agencies, planners, and extension specialists could also use this model to make decisions on manure P management. Key words: Long-term cattle manure application, total phosphorus, available phosphorus, rate of accumulation, non-irrigated and irrigated cropping


2019 ◽  
Vol 50 (20) ◽  
pp. 2593-2609
Author(s):  
Daniel E. Dodor ◽  
Yahaya J. Amanor ◽  
Abena Asamoah-Bediako ◽  
Dilys S. MacCarthy ◽  
Delali B.K. Dovie

2008 ◽  
Vol 88 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Elizabeth Pattey ◽  
Lynda G Blackburn ◽  
Ian B. Strachan ◽  
Ray Desjardins ◽  
Dave Dow

Nitrous oxide emissions are highly episodic and to accurately quantify them annually, continuous measurements are required. A tower-based micrometeorological measuring system was used on a commercial cattle farm near Cô teau-du-Lac, (QC, Canada) during 2003 and 2004 to quantify N2O emissions associated with the production of edible peas. It was equipped with an ultrasonic anemometer and a fast-response closed-path tunable diode laser. Continuous measurements of N2O fluxes were made during the spring thaw following corn cultivation in summer 2002, then during an edible pea growing season, followed by cattle manure application, cover crop planting and through until after the next spring ploughing. The cumulative N2O emissions of 0.7 kg N2O-N ha-1 during the initial snowmelt period following corn harvest were lower than expected. Sustained and small N2O emissions totalling 1.7 kg N2O-N ha-1 were observed during the growing season of the pea crop. Solid cattle manure applied after the pea harvest generated the largest N2O emissions (1.9 kg N2O-N ha-1 over 10 d) observed during the entire sampling period. N2O emissions associated with the cover crop in the fall were mostly influenced by manure application and totalled 0.8 kg N2O-N ha-1. For the subsequent spring thaw period, N2O emissions were 0.8 kg N2O-N ha-1. This represents approximately 15% of the annual emissions for the edible pea-cover crop system, which totalled 5.6 kg N2O-N ha-1 over the measuring periods. There was little difference in spring thaw N2O emissions between the two growing seasons of corn and edible pea-cover crop. Key words: Nitrous oxide emissions, legumes, snowmelt, dairy manure, tunable diode laser, flux tower


2018 ◽  
Vol 31 (4) ◽  
pp. 860-870
Author(s):  
Marcele de Cássia Henriques dos Santos Moraes ◽  
Erika Valente de Medeiros ◽  
Dayane da Silva de Andrade ◽  
Leandro Dias de Lima ◽  
Ivonaldo Carlos da Silva Santos ◽  
...  

ABSTRACT Plant growth promoter microorganisms have been studied as important tools for increasing crop production. Lettuce is the most consumed hardwood crop in the world. Numerous microorganisms are capable of acting in a beneficial way in the growth of this culture. The objective of the present study was to evaluate the efficacy of Trichoderma and Pseudomonas on the microbial biomass, enzymatic activities in sandy soil and lettuce production. The experimental design was completely randomized with ten replicates and treatments: CONT (absolute control); CM (control with cattle manure fertilization); CMB (with fertilization and Pseudomonas sp.); CMF (with fertilization and T. aureoviride) and CMBF (with fertilization and the two microorganisms combined). The fertilizer used was organic with cattle manure in a dose recommended for the culture. This study evaluated the production of lettuce, microbial biomass and the enzymatic activity of acid phosphatase, alkaline phosphatase and urease. The combined application of CMBF was efficient in increasing lettuce production, because it increased 85% of the cv. Veronica cultivated on sandy soil. The combined use of plant growth promoting microorganisms resulted to an increase in microbial biomass. In lettuce crops, it is recommended to use T. aureoviride URM 5158 and Pseudomonas sp. UAGF 14 in lettuce crops, because improved lettuce production, improves the biochemical quality of soils measured by absolute and specific enzymatic activities per unit of microbial biomass.


Sign in / Sign up

Export Citation Format

Share Document