Homeomorphic Images of Orthogonal Bases

2016 ◽  
Vol 31 ◽  
pp. 485-491
Author(s):  
M. Kebryaee ◽  
M. Radjabalipour

Necessary and sufficient conditions are obtained for a sequence $\{x_j:~j\in \mathbb J\}$ in a Hilbert space to be, up to the elimination of a finite subset of $\mathbb J$, the linear homeomorphic image of an orthogonal basis of some Hilbert space $K$. This extends a similar result for orthonormal bases due to Holub [J.R. Holub. Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces. \textit{Proc. Amer. Math. Soc.}, 122(3):779--785, 1994]. The proofs given here are based on simple linear algebra techniques.

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Nguyen Thanh Lan

For the differential equation , on a Hilbert space , we find the necessary and sufficient conditions that the above-mentioned equation has a unique almost periodic solution. Some applications are also given.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1125
Author(s):  
Carlos Marijuán ◽  
Ignacio Ojeda ◽  
Alberto Vigneron-Tenorio

We propose necessary and sufficient conditions for an integer matrix to be decomposable in terms of its Hermite normal form. Specifically, to each integer matrix, we associate a symmetric integer matrix whose reducibility can be efficiently determined by elementary linear algebra techniques, and which completely determines the decomposability of the first one.


1985 ◽  
Vol 26 (2) ◽  
pp. 177-180 ◽  
Author(s):  
Ridgley Lange

In [6] Conway and Morrell characterized those operators on Hilbert space that are points of continuity of the spectrum. They also gave necessary and sufficient conditions that a biquasitriangular operator be a point of spectral continuity. Our point of view in this note is slightly different. Given a point T of spectral continuity, we ask what can then be inferred. Several of our results deal with invariant subspaces. We also give some conditions characterizing a biquasitriangular point of spectral continuity (Theorem 3). One of these is that the operator and its adjoint both have the single-valued extension property.


2009 ◽  
Vol 7 ◽  
Author(s):  
Chris Mortensen ◽  
Steve Leishman

We apply linear algebra to the study of the inconsistent figure known as the Crazy Crate. Disambiguation by means of occlusions leads to a class of sixteen such figures: consistent, complete, both and neither. Necessary and sufficient conditions for inconsistency are obtained.


2020 ◽  
Vol 51 (2) ◽  
pp. 81-99
Author(s):  
Mohammad M.H Rashid

Let $M_C=\begin{pmatrix} A & C \\ 0 & B \\ \end{pmatrix}\in\LB(\x,\y)$ be be an upper triangulate Banach spaceoperator. The relationship between the spectra of $M_C$ and $M_0,$ and theirvarious distinguished parts, has been studied by a large number of authors inthe recent past. This paper brings forth the important role played by SVEP,the {\it single-valued extension property,} in the study of some of these relations. In this work, we prove necessary and sufficient conditions of implication of the type $M_0$ satisfies property $(w)$ $\Leftrightarrow$ $M_C$ satisfies property $(w)$ to hold. Moreover, we explore certain conditions on $T\in\LB(\hh)$ and $S\in\LB(\K)$ so that the direct sum $T\oplus S$ obeys property $(w)$, where $\hh$ and $\K$ are Hilbert spaces.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


1980 ◽  
Vol 35 (4) ◽  
pp. 437-441 ◽  
Author(s):  
W. Rehder

Abstract Necessary and sufficient conditions for commutativity of two projections in Hilbert space are given through properties of so-called conditional connectives which are derived from the conditional probability operator PQP. This approach unifies most of the known proofs, provides a few new criteria, and permits certain suggestive interpretations for compound properties of quantum-mechanical systems.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xunxiang Guo

Firstly, we study the representation ofg-frames in terms of linear combinations of simpler ones such asg-orthonormal bases,g-Riesz bases, and normalized tightg-frames. Then, we study the dual and pseudodual ofg-frames, which are critical components in reconstructions. In particular, we characterize the dualg-frames in a constructive way; that is, the formulae for dualg-frames are given. We also give someg-frame like representations for pseudodualg-frame pairs. The operator parameterizations ofg-frames and decompositions of bounded operators are the key tools to prove our main results.


1992 ◽  
Vol 04 (spec01) ◽  
pp. 15-47 ◽  
Author(s):  
H.J. BORCHERS ◽  
JAKOB YNGVASON

The subject of the paper is an old problem of the general theory of quantized fields: When can the unbounded operators of a Wightman field theory be associated with local algebras of bounded operators in the sense of Haag? The paper reviews and extends previous work on this question, stressing its connections with a noncommutive generalization of the classical Hamburger moment problem. Necessary and sufficient conditions for the existence of a local net of von Neumann algebras corresponding to a given Wightman field are formulated in terms of strengthened versions of the usual positivity property of Wightman functionals. The possibility that the local net has to be defined in an enlarged Hilbert space cannot be ruled out in general. Under additional hypotheses, e.g., if the field operators obey certain energy bounds, such an extension of the Hilbert space is not necessary, however. In these cases a fairly simple condition for the existence of a local net can be given involving the concept of “central positivity” introduced by Powers. The analysis presented here applies to translationally covariant fields with an arbitrary number of components, whereas Lorentz covariance is not needed. The paper contains also a brief discussion of an approach to noncommutative moment problems due to Dubois-Violette, and concludes with some remarks on modular theory for algebras of unbounded operators.


2015 ◽  
Vol 93 (1) ◽  
pp. 146-151 ◽  
Author(s):  
LEONID V. KOVALEV

Finite subset spaces of a metric space $X$ form a nested sequence under natural isometric embeddings $X=X(1)\subset X(2)\subset \cdots \,$. We prove that this sequence admits Lipschitz retractions $X(n)\rightarrow X(n-1)$ when $X$ is a Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document