scholarly journals Assessing Functional Role and Community Dynamics of Whitebark Pine at Alpine Treeline, Grand Teton National Park

Author(s):  
Lynn Resler ◽  
Yang Shao

Whitebark pine (Pinus albicaulis) is a keystone and foundation tree species in high elevation ecosystems of the Rocky Mountains. At alpine treelines along the eastern Rocky Mountain Front and in the Greater Yellowstone Ecosystem, whitebark pine often initiates tree islands through facilitation, thereby shaping vegetation pattern. This role will likely diminish if whitebark pine succumbs to white pine blister rust infection, climate change stress, and mountain pine beetle infestations. Here, we established baseline measurements of whitebark pine’s importance and blister infection rates at two alpine treelines in Grand Teton National Park. Our specific objectives were to: 1) examine the potential relationship between whitebark pine establishment and krummholz tree island formation at the upper alpine treeline ecotone in GTNP; 2) characterize blister rust infection rate and intensity at two treeline study areas and in whitebark pine growing both solitarily and within tree islands; and 3) characterize the biophysical environments a) where whitebark pine is/is not a majority tree island initiator, and b) with varying blister rust infection rates in treeline whitebark pine. In July 2015, we field-sampled treeline composition and blister rust infection in all krummholz whitebark pine in a total of 40 study plots. Preliminary results reveal: 1) that whitebark pine is a substantial component of treeline ecosystems, but is not a significant majority tree island initiator, and 2) blister rust infection levels for both study areas combined is 15.65%. Blister rust and mountain pine beetle interactions were not evident at the two study areas. This work provides important baseline measurements for understanding how community structure and composition may be altered given infestation by pathogens and pests in GTNP, especially in light of changing climate regimes.

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 834 ◽  
Author(s):  
Jenell I. Jackson ◽  
Sean B. Smith ◽  
Jonathan C.B. Nesmith ◽  
Leigh Ann Starcevich ◽  
Jennifer S. Hooke ◽  
...  

Whitebark pine (Pinus albicaulis. Engelm.) is vulnerable to a number of threats including an introduced pathogen (Cronartium ribicola J.C. Fisch.), epidemic levels of native mountain pine beetle (Dendroctonus ponderosae Hopkins), fire suppression, and climate change. To describe the structure of whitebark pine populations in two national parks in the southern Cascades (Crater Lake, Oregon, USA (CRLA) and Lassen Volcanic, California, USA (LAVO) National Parks), we surveyed trees in 30 × 50 × 50 m plots in both parks. We used these plots to describe the extent of white pine blister rust (the disease caused by Cronartium ribicola), mountain pine beetle occurrence, and to elucidate factors influencing the presence of pests and pathogens, cone production, and canopy kill. In each plot, we recorded data related to tree health, including symptoms of blister rust and mountain pine beetle, and reproductive vigor (cone production). In both parks, encroachment from other species, particularly mountain hemlock (Tsuga mertensiana (Bong.) Carrière), was negatively associated with cone production. In CRLA, water stress was a good predictor of blister rust infection and cone production. For CRLA and LAVO, the presence of mountain pine beetle and blister rust was associated with higher canopy kill for whitebark pine. Lastly, we found evidence for a pest-pathogen interaction, mountain pine beetle attack was greater for trees that showed symptoms of blister rust infection in CRLA. Our results indicate that whitebark pine populations in the southern Cascade Range are experiencing moderate levels of blister rust infection compared with other sites across the species range, and that competition from shade-tolerant species may result in an additional threat to whitebark pine in both parks. We present our findings in the context of park management and situate them in range-wide and regional conservation strategies aimed at the protection and restoration of a declining species.


Ecosphere ◽  
2016 ◽  
Vol 7 (12) ◽  
Author(s):  
Erin Shanahan ◽  
Kathryn M. Irvine ◽  
David Thoma ◽  
Siri Wilmoth ◽  
Andrew Ray ◽  
...  

2000 ◽  
Vol 30 (7) ◽  
pp. 1051-1059 ◽  
Author(s):  
Elizabeth M Campbell ◽  
Joseph A Antos

A major decline in the abundance of whitebark pine (Pinus albicaulis Engelm.) has recently occurred in the United States, primarily as a result of white pine blister rust (Cronartium ribicola J.C. Fisch. ex Raben.). However, no information on the status of whitebark pine in British Columbia, Canada, was available. We sampled 54 subalpine stands in British Columbia, examining all whitebark pine trees within plots for evidence of blister rust and mountain pine beetle (Dendroctonus ponderosae Hopk.) damage. About 21% of all whitebark pine stems were dead, and blister rust was the most important agent of mortality. Of all living trees sampled, 27% had obvious blister rust infection (cankers), but actual incidence was suspected of being as high as 44% (using all evidence of blister rust). Blister rust incidence and whitebark pine mortality were significantly related to differences in stand structure and the presence of Ribes spp., but relationships with local climate and site variables were absent or weak. The lack of strong relationships with climate suggests favourable conditions for the spread of the disease throughout most of British Columbia. Very little evidence of mountain pine beetle was found. Overall, the prospects for whitebark pine in British Columbia do not appear good; a large reduction in population levels seems imminent.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 35 ◽  
Author(s):  
Jonathan C.B. Nesmith ◽  
Micah Wright ◽  
Erik S. Jules ◽  
Shawn T. McKinney

The Inventory & Monitoring Division of the U.S. National Park Service conducts long-term monitoring to provide park managers information on the status and trends in biological and environmental attributes including white pines. White pines are foundational species in many subalpine ecosystems and are currently experiencing population declines. Here we present results on the status of whitebark and foxtail pine in the southern Sierra Nevada of California, an area understudied relative to other parts of their ranges. We selected random plot locations in Yosemite, Sequoia, and Kings Canyon national parks using an equal probability spatially-balanced approach. Tree- and plot-level data were collected on forest structure, composition, demography, cone production, crown mortality, and incidence of white pine blister rust and mountain pine beetle. We measured 7899 whitebark pine, 1112 foxtail pine, and 6085 other trees from 2012–2017. All factors for both species were spatially highly variable. Whitebark pine occurred in nearly-pure krummholz stands at or near treeline and as a minor component of mixed species forests. Ovulate cones were observed on 25% of whitebark pine and 69% of foxtail pine. Whitebark pine seedlings were recorded in 58% of plots, and foxtail pine seedlings in only 21% of plots. Crown mortality (8% in whitebark, 6% in foxtail) was low and significantly higher in 2017 compared to previous years. Less than 1% of whitebark and zero foxtail pine were infected with white pine blister rust and <1% of whitebark and foxtail pine displayed symptoms of mountain pine beetle attack. High elevation white pines in the southern Sierra Nevada are healthy compared to other portions of their range where population declines are significant and well documented. However, increasing white pine blister rust and mountain pine beetle occurrence, coupled with climate change projections, portend future declines for these species, underscoring the need for broad-scale collaborative monitoring.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 566 ◽  
Author(s):  
Jeremy Amberson ◽  
Megan Keville ◽  
Cara Nelson

Whitebark pine (Pinus albicaulis Engelm.), an ecologically important tree species in high-elevation ecosystems of western North America, is threatened by white pine blister rust (Cronartium ribicola Fischer) and increased pressure from mountain pine beetle (Dendroctonus ponderosae Hopkins) due to climate warming. In addition, there is concern that fire suppression may be leading to successional replacement of whitebark by late-seral trees. Despite widespread knowledge that the tree is in decline, there is limited understanding of its successional dynamics, particularly in forests disturbed by white pine blister rust and mountain pine beetle. Our objective was to examine how disturbances have affected forest composition, structure, and seedling regeneration over a 22-year period (1990–2012) at 19 sites in the Cascade Mountains of Washington State (USA). Over that time, 13 sites (68%) were infected by white pine blister rust, 11 (58%) were disturbed by mountain pine beetle, and 5 (26%) experienced wildfire. Tree community composition changed significantly during the study period, primarily due to significant mortality of mature (≥20-cm diameter at breast height) whitebark pine. Despite loss of mature whitebark trees, we found little evidence of successional replacement by other tree species. Whitebark seedling density was unrelated to basal area of mature whitebark pine, but positively correlated with the presence of herb and shrub cover. Our results demonstrate the value of long-term repeated measurements for elucidating successional dynamics.


Author(s):  
Nancy Bockino ◽  
Daniel Tinker

Whitebark pine (Pinus albicaulis Englem.) is a keystone species of many high elevation ecosystems in the Greater Yellowstone Ecosystem (GYE) and directly influence watershed quality by regulating snow accumulation and retention, facilitating regeneration after a disturbance, and stabilizing soil and rock on steep, harsh sites.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 477 ◽  
Author(s):  
Cathy Cripps ◽  
Genoa Alger ◽  
Robert Sissons

Designer niches in which environmental variables are controlled are useful in forest restoration to enhance survival of planted tree seedlings. Here, we evaluate particular manipulated habitats, on site variables, and pre-seedling conditions hypothesized to improve the survival rate of whitebark pine (Pinus albicaulis) seedlings out-planted in Waterton Lakes National Park. The tree species is in peril due to blister rust and mountain pine beetle infestations in its range; and is a restoration priority in Waterton Lakes because populations in the park are highly infected with blister rust (up to 90%). At Summit Lake, 21 plots were set up and half of each was terra-torched; 1000 seedlings were planted in clusters of three, under four conditions: on burned areas in burned beargrass mats, in burned areas where beargrass mats were not present, in unburned areas where beargrass was present, and in unburned areas without beargrass. This study reports data for the seventh year after planting, and overall, survival was 53% for individual seedlings and at least one seedling survived in 60.8% of clusters. Planting in burned areas increased cluster survival (by 34.3%, p ˂ 0.0001) and planting near microsites increased cluster survival (by 19.3%, p ˂ 0.0001); the type of microsite did not make a difference. Planting in beargrass mats decreased survival, but not significantly (8.9%, p = 0.11) and this was true for burns, not unburned areas. Inoculation with native ectomycorrhizal fungi did not enhance survival most likely because controls on lightly terra-torched and unburned areas had access to local native fungi. This is the first study to report statistics on the planting of seedlings in clusters; the results need to be compared with studies where seedlings are planted individually.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 635 ◽  
Author(s):  
Aaron Wagner ◽  
Diana Tomback ◽  
Lynn Resler ◽  
Elizabeth Pansing

In the northern Rocky Mountains of the U.S. and Canada, whitebark pine (Pinus albicaulis Engelm.) is a functionally important species in treeline communities. The introduced fungal pathogen Cronartium ribicola, which causes white pine blister rust, has led to extensive whitebark pine mortality nearly rangewide. We examined four treeline communities within the Greater Yellowstone Ecosystem (GYE) to assess structure and composition, whitebark pine prevalence and functional role, differences in growing season mesoclimate among study areas, and blister rust infection incidence. We found that (1) whitebark pine frequently serves as the majority overall, solitary, and leeward tree island conifer; (2) the prevalence of different tree species in the windward position in tree islands, and thus their potential as tree island initiators, may be predicted from their relative abundance as solitary trees; and (3) white pine blister rust infection incidence ranged from 0.6% to 18.0% across study areas. White pine blister rust poses a threat to treeline development and structure and the provision of ecosystem services in the GYE. Increasing blister rust resistance in nearby subalpine whitebark pine communities through seedling planting or direct seeding projects should eventually result in higher levels of blister rust resistance in whitebark pine in treeline communities.


Sign in / Sign up

Export Citation Format

Share Document